
AN01 ©2017 INTEG 1 July 20, 2017

Implementing a DMX512 Universe using the
JNIOR Model 410

Bruce S. Cloutier

INTEG Process Group, Inc., bruce.cloutier@integpg.com

Abstract – The JNIOR Controller is a generic device that
is used in a variety of control and monitoring solutions.
Application programs are executed by the operating
system and are used to optimize the controller for any
particular purpose. Some device configurations have
achieved widespread use in Digital Cinemas and are now
finding application within the Audio Visual, Stage and
Lighting markets. A general requirement in some of
these implementations involves the control of lighting
fixtures. A large segment of fixtures utilize the DMX512
standard for control signals. This paper details how to
configure a JNIOR Model 410 to generate a DMX512
Universe capable of controlling multiple DMX lighting
fixtures and accessories.

Index Terms – Lighting Controls, DMX Fixtures, DMX
Controller, DMX Converter, Virtual Lighting Panel, JNIOR
Configuration.

JNIOR CONTROLLER

The JNIOR is a networked controller which can be
considered to be a member of the Internet of Things (IoT). It
was developed long before these terms and classifications
were coined. It was intended to be, and successfully achieves
the role of an inexpensive alternative to more elaborate and
costly industrial control systems. This format of device has
been available in a series of successive backwards
compatible models for over 15 years. It provides integrators
with a consistent and reliable source of controller hardware.

When connected to the network a remote system (or
browser) can control a number of dry contact relay outputs
and read the status of a set of digital inputs. A number of
expansion modules are available providing additional relay
outputs capable of switching power circuits; adding analog
capabilities for 4-20ma and 10V input and output signals;
providing for dimmer control of LED strips including RGB
color; and for handling any local user interaction. The
JNIOR also supports serial channels for communicating with
other equipment.

The term JNIOR is an acronym which stands for Java
Network Input Output Resource [1]. It can be pronounced as
“junior” although the name is not intended to diminish the
device’s role in the world of controllers. In fact, beyond
simply providing remote I/O resources, the JNIOR is
programmable and is capable of providing sophisticated
distributed control logic and data monitoring. It can perform

autonomously in the absence of a network entirely. There
are many applications where the JNIOR’s network
connection is used only for initial configuration. This
controller can also be found embedded in other products
where control logic and a network footprint are beneficial.

JANOS OPERATING SYSTEM

The JNIOR comes with its own Operating System. This is a
complete preemptive multitasking operating system with all
of the generic functionality found in multiuser computing
systems. This includes a full network stack with secure
protocols and a fully functional web server with server-side
scripting capabilities.

The JANOS Operating System has been completely
developed by INTEG and specifically for use with the
JNIOR. This has allowed the system to be optimized for its
function without extraneous overhead. It allows the
inexpensive microcontroller at the heart of the JNIOR to
perform the tasks of more complicated computing platforms.

Being fully developed by INTEG this OS contains no
third-party source code. The advantage here is that when
issues are identified, INTEG is 100% in a position to resolve
the problem. In fact, many issues can be corrected the same
day that they are identified. There is no one else to blame
and issues cannot be “elevated”. There is no outside group
wherein issues become subject to separate prioritization,
independent release schedules, and code obsolescence.
Issues just get resolved.

Perhaps as important is the ability to easily expand
functionality. That is the case here, where the capacity to
generate the standard DMX512 signals was added. JANOS
in the future will support that protocol as a core function
offering the capabilities explored in this paper as built-in
features.

The term JANOS is also an acronym. It actually is an
acronym that incorporates an acronym. It stands for the
JNIOR Automation Network Operating System. The name
references an ancient Roman religious myth [2]. Janus is the
god of beginnings, endings and time. This leads to an
association with doorways, gates, and transitions. He is the
god who oversees all comings and goings. One can imagine
a relationship here to an I/O controller and that forms the
basis of the JANOS operating system name.

AN01 ©2017 INTEG 2 July 20, 2017

APPLICATION PROGRAMMING

The JNIOR out of the box is fully functional as a remote I/O
device. It can be used without running any Application
Program. An application program however gives the user
the ability to add unique and custom capabilities to the
device. INTEG provides application programs such as
cinema.jar which creates an environment specific to Digital
Cinema where cues and other signals trigger definable
macros.

Since most of the work is handled by the JANOS
operating system, an application program need not be very
complex. In the context of this paper we will see how a
program containing a simple loop can handle the DMX512
universe. You can do almost anything with an application
program. Providing documentation to support that flexibility
is somewhat difficult. INTEG is therefore willing to freely
support your programming efforts. All you have to do is
contact us and let us work with you.

Since the introduction of the Series 4 JNIOR,
application programming has been greatly simplified. These
programs are written in standard Java and any of the
available compiler tools can be used. You need only
generate a JAR file. We are most familiar with Netbeans
where there are a couple of simple configuration steps that
insure that your project is built against the proper
JanosClasses.jar runtime environment. Your program needs
to be compiled to run under this specific runtime and to not
reference any standard classes as might be supplied for
programs targeted to run on PCs.

The JanosClasses.jar runtime file can be retrieved from
the JNIOR as it resides in the /etc folder. This library is
JANOS version specific and programs compiled against one
version are guaranteed to be compatible with later versions.
A version of this JAR file is available that contains Javadoc
and source code references in addition to the set of runtime
classes.

HARDWARE REQUIREMENTS FOR DMX512

A DMX512 connection complies with the standard for
RS-485 communications [3]. The JNIOR Model 410 AUX
port supports RS-485 directly whereas the 412 and 414
models do not. You therefore need to use a 410 for DMX.
The AUX port will be configured for RS-485
communications.

The standard DMX512 OUT connector is XLR type 5-
pin female. The DMX512 standard [4] starting in 2004
prohibits the use of the 3-pin XLR connectors although these
remain prevalent in the market. One issue with the 3-pin
connections appears to be the polarity. Many devices
supporting the 3-pin XLR connectors also provide a polarity
switch. Here we will describe the proper 5-pin connection in
compliance with the standard.

The JNIOR AUX output uses a DB9F connector as is
common for serial communications. For the DMX512
implementation on the Model 410 you will need an adapter.

This is relatively simple to construct. The connections are
listed in Table I.

TABLE I

ADAPTER PIN CONNECTIONS

 5-pin XLR Female DB-9 Male
Signal Ground (GND) 1 5
Data- (D-) 2 2
Data+ (D+) 3 8
Not Used (NC) 4, 5 1, 3, 4, 6, 7, 9

The DMX512 standard specifies the use of cable with a

120 Ohm characteristic impedance and 12 pF/ft. capacitance.
These specifications are meant to insure that the maximum
number of fixtures can be controlled (32) and be placed
along the maximum length of wiring. For an adapter and for
a simple DMX control arrangement the cable requirement is
not that critical.

You can purchase a DMX512 XLR cable with a 5-pin
female connector on one end and tinned bare wires on the
other. Since most DB9M solder cup connectors take up to
20AWG cable you need to be careful about wire diameter or
soldering becomes difficult. There are 18AWG DMX cables
available. Those are too large (diameter of the wire is too
big). The DMX512 standard calls out 24AWG cable (larger
numbers are smaller diameters). That would be very easily
soldered into the DB9M. Don’t forget a cable hood to make
things look professional.

You can use the 3-pin XLR if you want to. It is
prohibited by the standard but that doesn’t appear to deter
everyone. The pin numbers are consistent (1, 2, and 3). You
may run into the polarity issue and in that case might have to
swap two of the wires in your adapter.

Note that your adapter should pass the cable shield
through. Again, this is not critical in a simple arrangement
but may be necessary in a complex stage setting where
electrical noise is prevalent.

DMX512 VARIANCES

The Model 410 with properly constructed adapter can
control a full DMX512 Universe (512 8-bit analog
channels). One important note here is that this DMX512 port
is not isolated.

In any facility, equipment connected to different A/C
line circuits can have dramatically different ground
potentials. When these devices are interconnected:

• Current may flow in ground (GND) circuits causing

noise, possible product damage and potential hazards.
• Common Mode Voltage differences can place signals

near or beyond operational limits preventing operation
or reliable function.

• The likelihood of damage due to lightning or ESD
events increases.

AN01 ©2017 INTEG 3 July 20, 2017

The DMX512 standard describes isolated connections
which are able to maintain or at least restore operation even
when common mode voltages exceed 1000s of volts. The
Model 410 AUX port is not isolated. Differences in ground
potentials can prevent operation and possibly damage the
JNIOR. This is not a significant risk when the JNIOR and
the lights being controlled are in the same vicinity and
powered from the same A/C circuits.

The DMX512 standard specifies a maximum update
rate of 44 samples per second. If the 512 channel message is
repeated continuously with minimum timing per the
specifications the maximum number of cycles is about 44. In
reality not all DMX controllers can achieve that rate. The
simple DMX application program that we will describe here
comes close. It likely updates 42-43 times a second. If the
complexity of the program is modified this number may
change although the JNIOR serial I/O is interrupt driven and
if programs are written carefully there are plenty of CPU
cycles left to do other work.

Also you do have the option of reducing the size of the
universe. A smaller number of channels can be transmitted.
Dropping the stream to 256 channels for instance increases
the update rate to 88/sec. Generally these update rates are far
higher than necessary for good lighting control. Fixtures that
implement motion often implement the actual movement
from starting point to finish internally. So the rate or the
smoothness of the action is not dependent on the DMX
update rate or the controller.

OPERATING SYSTEM REQUIREMENTS

Each Series 4 JNIOR runs the JANOS Operating System.
INTEG releases new versions of JANOS periodically.
Generally issues are corrected with each release. Typically
each includes a new set of features. Every new release is
fully compatible with those before. Customers need not
worry about an application interruption due to a change in
operating system.

At this time the current JANOS release is v1.6.1 and
v1.6.2 is now internally a Release Candidate. The latter is
under test pending an upcoming release date. JANOS v1.6.2
is required for this DMX application. Customers can
obtain and use release candidate OS and even Beta OS
versions. The one requirement being that those units must
be updated once the OS is released. INTEG only supports
the most recent OS release. That means that if you have an
issue our most likely first request is that you update to the
latest OS and verify that issue remains a problem.

The update process is simple. First you copy a supplied
UPD file to the /temp folder using FTP or by dragging and
dropping the UDP file in the Dynamic Configuration Pages
(DCP) tool open under the browser. Then execute the
jrupdate –fup temp/(filename) command from within the
Command Console accessible with through Telnet or the
DCP tool.

JNIORs can also be updated using the Support
Tool (ST) which is an application available for use under

Windows on the PC. In that case you need only open and run
a supplied Update Project. An update project can be created
to update not only the operating system but also application
programs and to make changes to JNIOR configuration via
the Registry.

In order to implement the DMX512 port, there have
been a couple of modifications to JANOS. These are
available as of v1.6.2 and you will need to update to that
version to successfully run DMX control. Specifically the
250 KBaud setting required by DMX512 has been added to
the serial port baud rate selection.

The DMX protocol also uses a Mark-After-Break
signaling technique for synchronization and to indicate
transmission of the start code and first channel. This
signaling is not easily achieved with normal serial ports and
especially those running under interrupt control. Special
methods have been added to the program class for the AUX
port allowing it to handle this aspect of the protocol.

STREAMING THE CHANNELS

As we discussed previously, an Application Program is used
to add new functionality to the JNIOR. Here we will
implement a program called dmx.jar which will be
responsible for generating the ongoing DMX512 data
stream.

An example of the dmx.jar program is shown in
Figure 1. The program needs to send the 512 channels
repeatedly. Each channel is a byte, 8 bits. The DMX512
protocol defines a Mark-After-Break preamble which is
followed by a single byte defining a Start Code. The default
Start Code for our purposes is a 0x00. So we need to issue
the preamble, send 513 bytes, and repeat. This is entirely
performed by Lines 61-64.

The hidden complexity here is taken care of by JANOS.
The serial ports are interrupt-driven. When a program writes
data it is buffered and sequenced out while the program
statements are allowed to continue. In Line 62 the
MarkAfterBreak() method not only creates the proper 100ns
Break condition followed by a 12ns Marking condition but it
knows not to do so until all previous data has been
transmitted (buffers are empty). So the program sleeps until
it can perform the action.

The following write() statement in Line 63 executes
immediately after the MarkAfterBreak preamble begins.
This outputs a 513 byte data array. Each byte goes into the
output buffer and, again, JANOS knows not to start
transmitting serial data from the buffer until any active
Mark-After-Break signal has completed. The two statements
can be executed in this tight loop to create the proper output
stream. Meanwhile the processor spends a lot time waiting
and making itself available for other activities.

We create a separate thread here (Lines 43-73) whose
sole purpose is to configure the AUX port properly and then
spew out the continuous DMX512 stream. Lines 50 and 51
create an object which gives us access to the AUX port and
opens that port. Lines 53 and 54 set the proper baud rate and
data format for DMX512.

AN01 ©2017 INTEG 4 July 20, 2017

 1 package dmx;
 2
 3 import com.integpg.comm.AUXSerialPort;
 4 import com.integpg.comm.SerialOutputStream;
 5 import com.integpg.system.MessagePump;
 6 import com.integpg.system.SystemMsg;
 7
 8 public class Dmx {
 9
10 public static void main(String[] args) throws Throwable {
11
12 DMXport dmx = new DMXport();
13 Thread t = new Thread(dmx);
14 t.start();
15
16 MessagePump pump = new MessagePump();
17 pump.open();
18
19 for (;;) {
20 SystemMsg msg = pump.getMessage(1400);
21 String text = new String(msg.msg);
22 int pos = text.indexOf(",");
23 byte chan = (byte) Integer.parseInt(text.substring(0, pos));
24 byte val = (byte) Integer.parseInt(text.substring(pos + 1));
25
26 if (chan > 0 && chan <= 512)
27 dmx.data[chan] = val;
28 else {
29 for (int n = 1; n < 513; n++) {
30 if (dmx.data[n] != 0)
31 {
32 String vals = n + "," + (dmx.data[n] & 0xff);
33 msg = new SystemMsg();
34 msg.type = 1400;
35 msg.msg = vals.getBytes();
36 pump.postMessage(msg);
37 }
38 }
39 }
40 }
41 }
42
43 private static class DMXport implements Runnable {
44
45 public byte[] data = new byte[513];
46
47 @Override
48 public void run() {
49 try {
50 AUXSerialPort aux = new AUXSerialPort();
51 aux.open();
52
53 aux.setSerialPortParams(AUXSerialPort.SPEED_250000,
54 AUXSerialPort.DATABITS_8, AUXSerialPort.STOPBITS_2, AUXSerialPort.PARITY_NONE);
55 aux.setRS485(true);
56 aux.enableReceivers(false);
57 aux.enableDrivers(true);
58
59 SerialOutputStream auxout = aux.getOutputStream();
60
61 for (;;) {
62 aux.sendMarkAfterBreak(100, 12);
63 auxout.write(data, 0, data.length);
64 }
65 }
66 catch (Throwable t) {
67 System.out.println(t);
68 }
69 }
70
71 }
72
73 }
74

FIGURE 1
JAVA APPLICATION PROGRAM TO GENERATE THE DMX512 STREAM

AN01 ©2017 INTEG 5 July 20, 2017

Lines 55-57 establish the use of RS-485 and the
unidirectional aspect of DMX512. In this protocol our
transmitter is always active and the receiver has no purpose.
We don’t want flood an unused input buffer with all of our
outgoing data and so we disable the receiver. The described
adapter actually does not loopback to the receiver input
anyway. Line 59 gives us access to the output stream used
by the loop.

That’s it. This thread is started by the main program in
Lines 12-14. The dmx.jar program can be started from the
Command Console just by typing ‘dmx’ and enter. You can
set a Run key in the JNIOR’s Registry that will start the
program on boot for you. The program can be enhanced with
a Watchdog capability that will restart it if for any reason
execution is terminated.

CHANGING CHANNEL VALUES

The remainder of the main method in the application
program of Figure 1 is one approach to controlling channel
data. The DMXport thread class defines a byte[] called data.
The array contains 513 bytes. The first being the protocol’s
Start Code which should remain unmodified with the initial
value of 0x00. This is to always indicate that channel data
follows in the protocol message.

To change the value of any DMX channel the program
needs to simply write the byte associated with that channel
to this array. Line 27 in the program updates a channel with
a new value by referencing the data array in the DMXport
class.

There are many ways to get new channel values. An
enumeration is beyond the scope of this paper. Here we
demonstrate one possibility using the inter-process
communications capability in JANOS.

The program Lines 16 and 17 open a Message Pump.
JANOS supports a messaging service to pass information
from one process to another or to broadcast messages to all
processes. The Message Pump object created here taps the
message loop. A program can use that class to examine each
and every message. It then has the responsibility of reposting
messages not addressed to it or those that are broadcasted.
Here in Line 20 we use a method that waits for and collects
only the specific message addressed for this program. All
other messages are properly handled for us in the
background.

Messages have a type defined by a number 0 through
65535. Message numbers under 1024 are reserved for
system use. There are a number of predefined system
messages. Message numbers above and including 1024 may
be assigned by the user. Here we picked 1400 as the DMX
communications type. When another process posts a
message with that type number, Line 20 picks it up for us.

The format of the message is user defined. Here in
Lines 21-24 we convert the message content to a String and
parse out the referenced channel number and its new value.
Line 27 can then simply update the channel array which in
turn alters the ongoing DMX stream.

The program provides one feature that will help the
remote source of value changes (a simulated lighting panel)
initialize its display. If a message is received with an invalid
channel number, the program generates a series of responses
using the same message number (1400) one for each non-
zero channel. These are used at the other end to initialize the
fader positions.

SIMULATED LIGHTING PANEL

Using HTML5 a simulation of a lighting panel with faders
can be easily achieved. The description of this is beyond the
scope of this paper. Any layout of faders along with other
controls can be created. JavaScript is used to handle the
events when faders are adjusted or controls activated. A
simplified page allowing for the adjustment of the first 12
DMX channels could be displayed as shown in Figure 2.

FIGURE 2
EXAMPLE WEB PAGE CONTENT

JANOS supports a robust built-in Websocket [5]

interface which uses JSON [6] formatting to pass requests
and receive responses. WebServers including that in JANOS
allow an HTTP protocol connection to be upgraded to
Websocket protocol. This is a seamless operation. Under
JANOS Websocket connections may also by processed by
application programs. They support authentication and can
be secured under TLS v1.2. Here we use the built-in service
for the DMX512 test implementation.

This interface can be used to handle everything from
configuration to control. In this application when a fader is
adjusted the associated JavaScript uses the Websocket
mechanism to have JANOS issue an inter-process message
of type 1400. So the browser formats the message and has it
passed through to the running dmx.jar application program.

This results in a functional lighting panel simulation. A
change in fader position creates in an immediate change in
the brightness of the connected LED lamp. There is no
perceivable delay.

AN01 ©2017 INTEG 6 July 20, 2017

SUMMARY

The Model 410 JNIOR supports RS-485 communications
and beginning with JANOS v1.6.2, a DMX512 data stream
can be properly generated. A simple adapter can be made to
connect standard DMX cabling to the unit’s AUX port. The
JNIOR can then successfully control a full DMX512
Universe.

A small application program is required to generate the
ongoing DMX512 stream. This can be customized to accept
updated channel data as required by a user’s application.
This program can be set to run on boot and thus turn the
Model 410 into a fulltime DMX controller.

REFERENCES

[1] Java™ is a trademark of the Oracle Corporation and its related
entities.

[2] "Janus" god of beginnings, Wikipedia, Encyclopedia Britannica
[3] RS-485, TIA-485(-A), EIA-485 Standards for Electrical

Characteristics of Generators and Receivers for Use in Balanced
Digital Multipoint Systems, Electronic Industries Association

[4] DMX512-A Entertainment Technology, E1.11-2008 (R2013)
American National Standard, Asynchronous Serial Digital Data
Transmission Standard for Controlling Lighting Equipment and
Accessories.

[5] Websocket Protocol, RFC 6455 Internet Engineering Task Force
(IETF) Standards Track, tools.Ietf.org/html/rfc6455

[6] JSON JavaScript Object Notation, www.json.org

CONTACT INFORMATION

INTEG Process Group, Inc.,
2919 E Hardies Rd 1st Floor
Gibsonia, PA 15044
USA

724-933-9350
www.integpg.com

	References
	Contact Information

