
INTEG Websocket Interface Specification
1. Abstract
The JANOS Web Server listens for connections from clients that are running one of the many popular browser programs.
Typically ports 80 and 443 (for secure TLS/SSL communications) are open for connection although those are configurable
through the JNIOR Registry. In addition to the default HTTP Protocol a connection may also utilize the Websocket Protocol
as described in this document. The Web Server ports are shared by these two protocols. This provides for access to status
information and control commands that previously were only available through the JNIOR Protocol. While the JNIOR Protocol
remains a viable option for these functions the Websocket approach offers seamless integration into the dynamic web page
environment. This capability is new to the Series 4 JNIOR products (Models 410, 412, and 414).

2. Introduction
2.1 Background
In order to remotely control the JNIOR you need the ability to obtain I/O status and to affect changes in I/O condition. In the
earlier Series 3 JNIOR this was accomplished through the JNIOR Protocol1 made available through a TCP/IP connection
typically on port 9200. This is a documented binary protocol that requires special programming external to the JNIOR for its
use. Care is also required to allow access to the specific port through routers and firewalls. Once successfully implemented
the JNIOR Protocol not only provided I/O status and control mechanisms. It also opened access to the JNIOR Registry2 and
thereby the ability to configure and manage the product.

In addition to the JNIOR Protocol it was also necessary to access the JNIOR Command Line through Telnet. Care again is
required to allow access to the Telnet port (Port 23) through routers and firewalls. The Command Line is also accessible us 
ing a serial connection to the RS 232 port on the JNIOR. This Console connection provides tools for monitoring I/O status
and affecting I/O conditions as well as use of various kinds of diagnostics. Furthermore in this environment the product can
be fully configured in all aspects including the network parameters. In addition this is where application programs can be ex 
ecuted which extend the functionality of the JNIOR product.

Management of the JNIOR also requires the manipulation of files in the local file system. While files may be manipulated
through Console connection transfer to/from an external system is done using FTP. Again care must be taken to allow ac 
cess to the FTP command port (Port 21) through routers and firewalls. FTP typically opens/accepts data connections which
must also be accommodated by the network.

With the introduction of the Series 4 JNIOR running the JANOS operating system the various I/O and management require 
ments covered by these other protocols can be additionally handled through a single Web Server connection. Access to the
Web Server is typically through ports 80 and 443. The latter connection providing for TLS/SSL up to 256 bit security. While
these ports would also need to be accommodated by routers and firewalls this is a much more standard requirement and
often routine request for IT personnel. This consolidation of functionality is accomplished using the Websocket Protocol3 as
specified by the Internet Engineering Task Force (IETF) in combination with JANOS server side scripting. This can result in a
fully functional browser based dynamic website providing JNIOR monitoring and control. The example being the configura 
tion pages provided with the product. These Javascript[TM] based dynamic web pages have replaced the Java based ap 
plets used by the Series 3 JNIOR products.

2.2 Protocol Overview
Most computer languages today accommodate programmatic connection to Web Servers in one fashion or another. It makes
sense since the majority of applications developed today involve networking and therefore access to the vast range of data
available through Internet. These web application needed some form of bi directional communication between the client and
server. For a time programmers attempted to get the job done through an abuse of the HTTP Protocol. A simpler solution has
been provided in the form or a Websocket API4 which has been quickly accommodated. As a result most web based pro 
gramming environments support Websocket connections and the programmer can utilize them as easy as any other web
protocol.

http://10.0.0.6/redmine/projects/jnior-core-janos/wiki/Websocket_Access#fn1
http://10.0.0.6/redmine/projects/jnior-core-janos/wiki/Websocket_Access#fn2
http://10.0.0.6/redmine/projects/jnior-core-janos/wiki/Websocket_Access#fn3
http://10.0.0.6/redmine/projects/jnior-core-janos/wiki/Websocket_Access#fn4


Briefly, the client makes a connection to a JANOS Web Server port. This port expects a valid HTTP connection but is also
shared by the Websocket protocol. Transparently behind the scenes the connection issues the appropriate HTTP headers
requesting an 'upgrade' to the Websocket protocol. When the handshake is complete the connection will be ready to handle
bi directional websocket messaging. The JANOS Web Server supports a built in websocket service with messaging that can
be used to monitor, control and manage the Series 4 JNIOR. The built in service employ JSON5 message formatting.

To provide additional flexibility the JANOS Websocket connection can, through a parameter in the URL, be redirected to an
application running on the JNIOR. In the case websocket messages are routed through the JANOS inter process messaging
mechanism to the application program. The program uses the same messaging system to provide replies and messages
outward through the websocket connection. In this fashion a completely custom messaging system can be implemented.

2.3 Security
Any protocol providing control and management functions must employ some form of security preventing unauthorized ac 
cess and disturbance. In addition to being available through a TLS/SSL secure connection the built in JANOS Websocket
implementation requires authentication. The authentication handshake must be successfully completed before any opera 
tions for monitoring, control and management will be allowed. This login uses active JANOS user accounts and subsequent
operations adhere to the account permissions assigned by the administrator.

To facility the seamless use of the Websocket protocol in the implementation of dynamic web pages a mechanism is pro 
vided that utilizes any website authentication completed by the browser to pre authorize the websocket connection. This in 
sures that only a single entry of login credentials is required to bring up a fully functional and secure dynamic website served
by the JNIOR. Note that custom application running on the JNIOR that serve websocket connections are free to implement or
ignore any kind of authentication requirement.

3. Connection
3.1 Built in Websocket Service
Once a connection to a configured Web Server port (default 80 and 443) is made and upgraded from the default HTTP Pro 
tocol to the Websocket Protocol, traffic must conform to the websocket specification. Except in the case discussed in Section
3.2 the JANOS Web Server uses a built in server to handle all websocket messages then received. These must use the
JSON format and the connection must be authenticated.

To initialize communications the client should send a blank or empty message. The following is acceptable.

{
"Message":""

}

The connection will proceed depending on the authentication requirements established by JNIOR configuration and the en 
vironment making the connection (browser, application, etc.).

3.1.1 Default Permissions
The Series 3 JNIOR (Models 310, 312, and 314) were shipped where by default web pages were not protected by login. The
login requirement encountered when running the applets was the result of security in the JNIOR Protocol. Access to web
pages could be controlled by permissions set on individual files or folders. For instance, removing the read attribute (R) from
the /flash/www folder would force the browser to ask for login credentials and thus protect the pages. Unfortunately a second
login would then be required by the JNIOR Protocol which has to be separately protected since control and configuration was
possible though it. Modifying folder permissions involved a console command (CHMOD) which tended to be unfamiliar to
everyone.

The Series 4 JNIOR (Models 410, 412, and 414) use a new Registry key WebServer/Login to control web page access. This
key by default is set to TRUE. The dynamic configuration pages therefore also request login credentials but a second login is
not required due to the Websocket Protocol implementation which will be discussed in a moment. The Websocket Protocol
replaces the JNIOR Protocol just as the dynamic configuration pages replace the applets which have been dropped. You
may still control access to areas of the JANOS website using file and folder permissions if desired. That would only be nec 
essary should you disable the WebServer/Login requirement.

http://10.0.0.6/redmine/projects/jnior-core-janos/wiki/Websocket_Access#fn5


3.1.2 WebServer Login Enabled
With the Web Server Login requirement enabled any access to the JANOS website is challenged using the standard 401
Unauthorized response. The JANOS Web Server provides the necessary parameters so the browser can request the user's
login credentials. If the proper credentials are entered and verified by JANOS the page is promptly served. A session ID is
assigned.

Subsequently the Authorization information is supplied with requests for other pages required from the website. The JANOS
Web Server recognizes the association between those credentials and the original login and therefore doesn't challenge
each and every page. When the browser then moves to open a Websocket connection it uses the temporary session ID for
authentication. A second is not required. This can be done because all of these connections are handled by the Web Server.
This unlike the JNIOR Protocol which is a separate server entirely and cannot be passed shared authentication information.

Once you have authenticated for the website, you can create Websocket connections in the browser session without an ad 
ditional login step. Immediately after opening the Websocket connection you will receive a "Monitor" message and you are
good to go.

3.1.3 WebServer Login Disabled
If you set the WebServer/Login key to FALSE and assuming that permissions on files and folders have not been modified
retaining the default Read Access flag, the browser will not need to request your login credentials. When a Websocket is then
made there are no preauthorized credentials. The login handshake in the Websocket connection will be required before you
may proceed using the websocket. This behavior assumes that the Websocket/Anonymous Registry key has not been de 
fined or is set to 0.

Upon opening the connection a "monitor" message will not be provided. The application needs to send the blank message
and will receive basically the 401 Unauthorized error. The application will then need to request the user's credentials and
calculate the Auth Digest response on its own. This is the same procedure performed by the browser. The dynamic config 
uration pages supplied with the JNIOR provide for this requirement. The Javascript can be used for reference.

Once the user credentials are processed the handshake can be completed and will proceed as follows.

{
"Message":""

}

{
"Message":"Error",
"Text":"401 Unauthorized",
"Nonce":"5d894efb48e1c3bc074fe78e7a5f"

}

{
"Auth Digest":"jnior:65f2d1cb66ef63f7d17a764f3a2f2508"

}

{
"Message":"Authenticated",
"Administrator":true,
"Control":true

}

A "Monitor" message will likely immediately follow. This might even be received before the "Authenticated" message. That is
the asynchronous nature of the connection. Please feel free to contact INTEG for assistance in implementing the digest cal 
culation.

3.1.4 Anonymous Operation
If the Websocket/Anonymous Registry key is set to a valid user ID (1 is generally the JNIOR Administrator's ID), no login will
be required. The USERS console command can be used to determine the available user IDs. This, however, is extremely
dangerous. Any application can then make a fully functional Websocket connection. This gives anyone access to the unit



with the ability to raise havoc with controls and to modify JNIOR configuration. This is not recommended. If there is physical
security, meaning that access is only available to personnel on the local network and all those can be trusted, then this set 
ting may be of use. Otherwise you are allowing anonymous access to this connection at your own risk.

It is important to note that even if you have WebServer/Login set to TRUE and have to enter username and password to
bring up the website, the websocket interface is not secure if anonymous access is enabled. A separate application or copy
of the website can get full control of your JNIOR.

With the anonymous key set to a valid user ID, the websocket connection will not require login. Immediately after making the
connection you will receive the "Monitor" message. The connection is then available for full use.

3.2 Custom Server Applications
The JANOS operating system supports an inter process communications mechanism similar to Windows(R). A Java appli 
cation can be written to run in the JANOS environment (built solely against etc/JanosClasses.jar) which can exchange mes 
sages with the Web Server process. A Websocket connection can be opened and redirected to communicate with the appli 
cation which can then act as a custom server. This is achieved by URL parameter. For instance the following URL will estab 
lish such a connection.

ws://10.0.0.201&app=1030

The inter process messaging system uses a numeric ID to identify messages. JANOS system messages all use an ID less
than or equal to 1023. This leaves IDs of 1024 and greater free for user assignment. The APP parameter in this URL defines
a message ID to be used for all incoming websocket messages on this connection. The presence of the APP parameter tells
the JANOS Web Server not to utilize the built in websocket server for this connection but to pass all messages received onto
the inter process message system with the defined ID.

The application server is written to open a message listener and to collect all messages with (in this case) an ID of
1030. Note that an even number should be used for all incoming messages. These messages may be formatted as desired
by the application. There is no requirement and JSON is may not even be used. The application server can then formulate a
response or any other transmission placing the content onto the inter message system with an ID one greater than assigned
by APP. In this case that would be 1031. The Web Server processes user messages forwarding them back out through any
websocket connection assigned to the ID one less (or 1030).

It is important to note that more than one websocket connection can be made assigning the same APP number. A single
custom server will receive all such messages. It is provided additional information pertaining to the socket so it may handle
the separate sources and respond specifically to each connection using the common reply ID (APP + 1).

If the custom server application is not running on the JNIOR the websocket will not receive a response to its messages. It
may keep trying. There presently is no mechanism to automatically start the custom server upon detection of a websocket
connection. The custom server application should be started at boot using an appropriate Run key.

Please feel free to contact INTEG for assistance if you are interested in writing a custom server of this kind.

4. Messaging
This section describes the various bi directional messages and replies supported by the built in Websocket Server. These
communications are handled by the JANOS Web Server process.

The JANOS server implementation is not Master Slave however there are a number of 'Requests' that have 'Responses'
which is typical for such a server. In addition to this, unsolicited messages may be received from the server. These provide
immediate notification for changes in I/O status and updates in configuration settings for instance. Any use of this websocket
implementation must handle the presence of unsolicited messages. Care is also required to pair responses with the associ 
ated requests as messaging order is not guaranteed. Optional Meta data supplied with a Request is returned with the Re 
sponse unmodified. This can then be used to identify each response and the action it then requires.

This Websockets interface utilizes the same set of JSON Object as does the JANOS Management Protocol (JMP). Please
refer the JANOS Management Protocol Specification for further detail. (See JANOS Management Protocol (JMP)). JMP
messages are transmitted in a 2 element JSON Array format. This Websockets interface transfers only the JSON Object
associated with the message. The blocking here is handled by the low level Websockets logic.

https://jnior.com/wp-content/uploads/dlm_uploads/2024/03/JANOS_Management_Protocol_JMP-1.pdf


References
1 JNIOR Protocol Specification, INTEG Process Group, Inc.
2 Registry Key Assignments, INTEG Process Group, Inc.
3 RFC 6455, Internet Engineering Task Force Standard Track, ISSN: 2070 1721, Dated De 
cember 2011. https://tools.ietf.org/html/rfc6455#ref WSAPI
4 Hickson, I., "The WebSocket API", W3C Working Draft WD websockets 20110929, Septem 
ber 2011, http://www.w3.org/TR/2011/WD websockets 20110929/. Latest version available
at http://www.w3.org/TR/websockets/.
5 The JSON Data Interchange Standard, http://www.json.org/
6 Wireshark Network Protocol Analyzer, https://www.wireshark.org/

https://tools.ietf.org/html/rfc6455#ref-WSAPI
http://www.w3.org/TR/2011/WD-websockets-20110929/
http://www.w3.org/TR/websockets/
http://www.json.org/
https://www.wireshark.org/

