
JNIOR Modbus Protocol Implementation

Dated November 16, 2009
(v3.4 and later)

Copyright Copyright  2001-2009 INTEG process group, Inc.
 All rights reserved.

Notice Every effort was made to make this document as accurate and useful as practical at

the time of writing. INTEG process groups reserves the right to alter the information
presented herein as well as the function of the JNIOR product at any time without
prior notice. All information is subject to change.

Trademarks Trademarks are the property of their respective holders.
 1-Wire is a registered trademark of Dallas Semiconductor.

Use Restrictions This document, all related documents and the software contained in the JNIOR are

copyrighted by INTEG process group and may not be copied or reproduced without
prior consent from INTEG process group, inc.

INTEG process group, inc.
2919 E. Hardies Rd, First Floor
Gibsonia, PA 15044

www.integpg.com

JNIORsales@integpg.com

PH (724) 933-9350
FAX (724) 443-3553

INTEG process group, inc.

2 jr310 Modbus Protocol Implementation

Contents

Revision History .. 3
Modbus Server Enable/Disable ... 4
Modbus Port .. 4
Login Requirement ... 4
jr310 Modbus Addressing .. 5

Mapping I/O Expansion Modules ... 7
Locating the Device in the Registry ... 7
Selecting a Mapping Address .. 7
Mapping the Device ... 8
Device ReadBlock Formats ... 8

TCP/IP Message Structure ... 14
MBAP Header ... 14
Byte Ordering ... 14

Public Function Codes ... 15
01 (0x01) Read Coils .. 15
02 (0x02) Read Discrete Inputs .. 16
03 (0x03) Read Holding Registers ... 17
04 (0x04) Read Input Registers .. 18
05 (0x05) Write Single Coil ... 20
06 (0x06) Write Single Register .. 21

Fast Digital Input and Relay Output Status.. 22
Controlling 8 Relays Simultaneously ... 22

14 (0x0E) Read Device Identification ... 23
15 (0x0F) Write Multiple Coils .. 24
16 (0x10) Write Multiple Registers ... 25
22 (0x16) Mask Write Register .. 26
23 (0x17) Read/Write Multiple Registers ... 28
43 (0x2B) Read Device Identification ... 29

User-Defined Functions .. 31
100 (0x64) User Login ... 31

Encoded Password Transfer ... 31
101 (0x65) Pulse Multiple Coils .. 33
102 (0x66) Read Registry Keys .. 34
103 (0x67) Write Registry Keys .. 35
104 (0x68) Pulse Multiple Coils with Mask .. 37
105 (0x69) Write Multiple Coils with Mask .. 38

Modbus Exception Responses .. 39

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 3

Revision History

Date OS Version Change Description

12/22/2005 v2.03.225 Added login extension supporting an encoded login.

2/1/2006 v2.11.221 Remapped Counter and Usage addressing. Bit and Register space now
overlap and are immutable (non-volatile). All functions now address the same
memory space.

7/19/2006 v2.11.395 Added 104 (0x68) Pulse Multiple Coils with Mask and 105 (0x69) Write
Multiple Coils with Mask functions. Corrected address references throughout
the document. Added example transactions and additional Registry, numeric
format and application information.

8/23/2006 v2.12.38 Added read/write access to external Sensor Port modules.

4/9/2008 v2.14.17 Added support for the external RTD Analog Module and the 4ROUT Digital
Module with pulse capabilities.

7/21/2009 V3.3 Modbus Server is now ’disabled’ by default

11/16/2009 V3.4 Modbus Server is back to being ’enabled’ by default

INTEG process group, inc.

4 jr310 Modbus Protocol Implementation

This defines the JNIOR Modbus/TCPIP protocol implementation available through the Ethernet network.

Modbus Server Enable/Disable

By default the Modbus protocol server is enabled and ready to accept connections when the JNIOR is
received from the factory. (Please note that login is also enabled by default.) The server may be
configured to not run in the future by defining and setting the following Registry key. Note that this key
affects the server status after boot and does not enable or disable the server immediately.

ModbusServer/Server = enabled (default)
ModbusServer/Server = disabled

Modbus Port

The default Modbus Port is 502. You may elect to use a custom port number compatible with your
Modbus application software. Using a unique port number offers additional security against those that
might be searching for Modbus servers on the network by making the Modbus server difficult to find. The
following Registry key may be defined. This selects the port when the Modbus server is started at boot.

ModbusServer/Port = 502 (default)

Login Requirement

Unless it is specifically disabled by setting the following Registry Key to “disabled” this protocol
implementation will require the successful completion of the 100 (0x64) User Login Function before any
of the remaining functions will be recognized. The Login will remain valid until the connection is broken or
until another User Login is attempted.

ModbusServer/Login = enabled (default)
ModbusServer/Login = disabled

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 5

jr310 Modbus Addressing

The JNIOR Modbus address space consists of a single 8Kb non-volatile (immutable) memory block.
JNIOR I/O registers overlay the low end of the address space. The remainder of the defined address
space is available as Modbus scratch memory. Data written to this memory will retain its content after
power is removed from the JNIOR. Optionally I/O expansion modules connected via the external Sensor
Port may be mapped into the data space.

The standard Modbus memory areas are all one and the same. This means that Discrete Inputs, Coils,
Input Registers and Holding Registers are all one and the same. Therefore the individual bits of any given
register many be addressed using Discrete Input or Coil commands and likewise blocks of Discrete Input
or Coil bits may be transferred as registers.

Addresses are zero-based in the protocol although application level programs may refer to them using a
one-based approach. Care should be taken to avoid any confusion resulting in an offset of one.

The Register addressing is word (16-bit) based. For 32-bit and 64-bit values the lower address word
should be read or written first. This makes a difference when reading the 32-bit counters for instance as
JNIOR will sample the entire 32-bit counter value when the first (lower address) word is read. This insures
that the value does not change should the counter advance while the words are being read. Writing
occurs when the high address word is written.

Modbus Data Store
Word Address

Range
Bit Address

Range
Description

0000 00000 – 00015 Digital Inputs/Relay Outputs **
0001 – 0016 00016 – 00271 32-bit Digital Input Counters **
0017 – 0080 00272 – 01295 64-bit Input/Output Usage Meters **
0081 – 0255 01296 – 04095 - Reserved -
0256 – 4095 04096 – 65535 Immutable Scratch Memory

** The JNIOR I/O overlays the memory and the following addresses are predefined.

Discrete Inputs (bit addressing)
Address Description

bit 00000 Digital Input 1
bit 00001 Digital Input 2
bit 00002 Digital Input 3
bit 00003 Digital Input 4
bit 00004 Digital Input 5
bit 00005 Digital Input 6
bit 00006 Digital Input 7
bit 00007 Digital Input 8

INTEG process group, inc.

6 jr310 Modbus Protocol Implementation

Coils (bit addressing)

Address Description
bit 00008 Relay Output 1
bit 00009 Relay Output 2
bit 00010 Relay Output 3
bit 00011 Relay Output 4
bit 00012 Relay Output 5
bit 00013 Relay Output 6
bit 00014 Relay Output 7
bit 00015 Relay Output 8

Input Registers (32-bit, 2 words each)
Address Description

word 0001 Digital Input Counter 1
word 0003 Digital Input Counter 2
word 0005 Digital Input Counter 3
word 0007 Digital Input Counter 4
word 0009 Digital Input Counter 5
word 0011 Digital Input Counter 6
word 0013 Digital Input Counter 7
word 0015 Digital Input Counter 8

Input Registers (64-bit, 4 words each)
Address Description

word 0017 Digital Input 1 Usage Meter
word 0021 Digital Input 2 Usage Meter
word 0025 Digital Input 3 Usage Meter
word 0029 Digital Input 4 Usage Meter
word 0033 Digital Input 5 Usage Meter
word 0037 Digital Input 6 Usage Meter
word 0041 Digital Input 7 Usage Meter
word 0045 Digital Input 8 Usage Meter
word 0049 Relay Output 1 Usage Meter
word 0053 Relay Output 2 Usage Meter
word 0057 Relay Output 3 Usage Meter
word 0061 Relay Output 4 Usage Meter
word 0065 Relay Output 5 Usage Meter
word 0069 Relay Output 6 Usage Meter
word 0073 Relay Output 7 Usage Meter
word 0077 Relay Output 8 Usage Meter

You may toggle bits anywhere in the address space although the addressing gets a little difficult. Multiply
the word address by 16 bits to get the starting bit address for that word. For instance word address 1,000
contains bit addresses 16,000 thru 16,015.

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 7

Mapping I/O Expansion Modules

I/O Expansion Modules of various types are available for connection to the JNIOR Sensor Port. These
may include temperature probes or modules. A module may contain one or more individual 1-Wire
devices. These devices provide additional input and output capabilities and access to these capabilities
through the Modbus Protocol may be desired.

Each external device has its own unique 8-byte 64-bit device identification code (DeviceID). The JNIOR
Protocol provides for read/write access to these devices and even defines pseudo-IDs to address the
internal digital I/O. The JNIOR Modbus implementation maps the internal I/O by default to the fixed
addresses described in the prior section. The external devices, where DeviceIDs and types are not known
until connected, are not mapped by default. An entry in the JNIOR Registry is required to make the device
available through this protocol.

Each device when read reports a ReadBlock containing the status of inputs and the current setting of
outputs. The format of this ReadBlock varies by device type. Through a Registry key entry the entire
content of a device’s ReadBlock may be mapped into the Modbus memory space. Care must be taken to
insure that address selections do not interfere with other devices or with Modbus addresses already in
use for other purposes.

 Locating the Device in the Registry

Devices may be connected or removed from the Sensor Port while the JNIOR remains powered. A new
device will not appear in the Registry and therefore cannot be mapped until it is first discovered. This
occurs during the boot process. When a new device is connected for the first time it is important to reboot
the JNIOR. This insures that a registry entry for the device is created in the OneWire/ registry folder.

After connecting the device and rebooting the JNIOR, use the Registry Editor or the Browser interface to
examine the Registry. There should be a OneWire/ folder containing one or more device addresses. The
OneWire/Devices registry key lists the DeviceIDs of those devices connected during the discovery
process that ran at boot-up. There will be a separate folder for each device listed and there may be other
folders if other devices had been connected at a prior time. These folders are named by the hexadecimal
representation of their DeviceID.

If you cannot determine which of the listed DeviceIDs belongs to the device that you want to map,
disconnect all of the other devices and reboot. The OneWire/Devices key would then only contain
addresses associated with the module or device you have connected. You can then open the Registry
folder(s) associated with that device(s). You may edit OneWire/<DeviceID>/Desc key content as
desired to identify the device.

 Selecting a Mapping Address

Each device type has its own formatted data block. The entire block will be mapped into the Modbus
address space. The block formats for typical devices will be described in the next section. These can be
from 1 to dozens of bytes. You must select a Modbus address to insure that the entire block fits in the
memory space and does not overlap any other devices.

Addresses 0 thru 255 are reserved for internal I/O. While addresses in this range that have not been
outlined in the prior table may be used, an OS update may later introduce a conflict. Your address
assignment should be at address 256 or above.

Modbus addresses refer to 16-bit words (2 bytes each). If you are mapping a 4-20ma Analog Expansion
module for instance the associated ReadBlock is 12 bytes in length and contains 6 16-bit values (4
analog input followed by 2 analog output raw values). This would occupy 6 Modbus addresses. The
highest address that you could use is then 4090 which would place the block at the very end of the

INTEG process group, inc.

8 jr310 Modbus Protocol Implementation

Modbus space. Recalling that the highest available address is 4095, using that address or others above
4090 would cause the block to overlap the end of memory and the error would lead to unpredictable
results. Mapping this module to address 1000 would create the following assignments:

Address Read/Write Status Content
1000 Read Only Ch 1 Current Input
1001 Read Only Ch 2 Current Input
1002 Read Only Ch 3 Current Input
1003 Read Only Ch 4 Current Input
1004 Read/Write Ch 1 Current Output
1005 Read/Write Ch 2 Current Output

You can find out more about the formatting for this module in a subsequent section.

 Mapping the Device

One you have selected a Modbus Address for the device you must create an entry in the Registry in that
device’s folder. For example, to map the analog module discussed in the prior section at address 1000
you would add the following key:

OneWire/<DeviceID>/ModbusAddress = 1000

where the DeviceID is the hexadecimal representation that appears in the Registry for the device. It is
easiest to navigate to the folder for the device and create a ModbusAddress key. You need not type the
DeviceID address. Note that Registry entries are case-sensitive.

Once this key appears in the Registry the device if connected will be available at that address with the
next successful Modbus connection. Remember that the Modbus addressing as defined in this document
is represented as zero-based (0-4095). Some applications may use one-based addressing (1-4096) and
this may lead to some confusion if you are not aware of it.

 Device ReadBlock Formats

Each device will have its own Read Block format and not all of the content may be written (if any). The
blocks for some typical devices are shown here. Note that each Modbus address references 2 bytes.
When reading or writing a mapped Modbus address one may need to apply masking and shifts to
properly read/write the desired fields/values. Refer to the JNIOR Protocol document for current device
read blocks, write blocks and descriptions.

 External Sensor Type 10 – Temperature Probe Read Block

Item # of Bytes Content Defined Values
1 8 Temperature (double)

Read Only
Current temperature in degrees
Celsius. Conversions take from
500 to 750 milliseconds.
Resolution is 0.0625 degrees
Celsius.

8 bytes Total Length (4 Modbus Addresses)

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 9

 External Sensor Type 12 – Dual Addressable Switch Read Block

Item # of Bytes Content Defined Values
1 1 Channel A Level (byte) Read/Write 0=low, 1=high

2 1 Channel B Level (byte) Read/Write 0=low, 1=high

2 bytes Total Length (1 Modbus Address)

 External Sensor Type 1D – 4kbit RAM with Counter Read Block

Item # of Bytes Content Defined Values
1 4 Channel A Count (unsigned int)

Read Only

2 4 Channel B Count (unsigned int)
Read Only

8 bytes Total Length (4 Modbus Addresses – 2 per counter)

 Note: RAM access not available.

 External Sensor Type 20 – Quad A/D Converter Read Block

Item # of Bytes Content Defined Values
1 2 Channel A (unsigned short)

Read Only
Raw 16-bit A/D reading 0x0000 to
0xFFFF full scale.

2 2 Channel B (unsigned short)
Read Only

Raw 16-bit A/D reading 0x0000 to
0xFFFF full scale.

3 2 Channel C (unsigned short)
Read Only

Raw 16-bit A/D reading 0x0000 to
0xFFFF full scale.

4 2 Channel D (unsigned short)
Read Only

Raw 16-bit A/D reading 0x0000 to
0xFFFF full scale.

8 bytes Total Length (4 Modbus Addresses)

 External Sensor Type 28 – Temperature Probe Read Block

Item # of Bytes Content Defined Values
1 8 Temperature (double)

Read Only
Current temperature in degrees
Celsius. Conversions take from
500 to 750 milliseconds.
Resolution is 0.0625 degrees
Celsius.

8 bytes Total Length (4 Modbus Addresses)

INTEG process group, inc.

10 jr310 Modbus Protocol Implementation

 External Sensor Type 2C – Digital Potentiometer Read Block

Item # of Bytes Content Defined Values
1 1 Feature Register (byte)

Read Only
(see below)

2 1 Control Register (byte)
Read/Write

(see below)

3 1 Wiper Position (byte)
Read/Write

0-255

3 bytes Total Length (2 Modbus Addresses – position in MSB of second)

Feature Register

D7 D6 D5 D4 D3 D2 D1 D0

PR NWP NP WSV PC

PC 0: logarithmic potentiometer element(s)
 1: linear potentiometer element(s)

WSV 0: wiper position(s) non-volatile
 1: wiper position(s) volatile

NP 00: device contains 1 potentiometer
 01: device contains 2 potentiometers
 10: device contains 3 potentiometers
 11: device contains 4 potentiometers

NWP 00: 5-bit (32 positions)
 01: 6-bit (64 positions)
 10: 7-bit (128 positions)
 11: 8-bit (256 positions)

PR 00: 5K Ohm resistance
 01: 10K Ohm resistance
 10: 50K Ohm resistance
 11: 100K Ohm resistance

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 11

Control Register

D7 D6 D5 D4 D3 D2 D1 D0
X CPC X X IWN WN

WN 00: select potentiometer 1
 01: select potentiometer 2
 10: select potentiometer 3
 11: select potentiometer 4

IWN 1’s complement of WN

CPC 0: charge pump OFF
 1: charge pump ON

X don’t care

 External Sensor Type FB – 4ROUT Digital Module

Item # of Bytes Content Defined Values
1 1 Last Used Channel Select Mask Bits D0 thru D3 correspond to

Relay Outputs A thru D.
(0 = No Change, 1 = Change)

2 1 Relay State Bits D0 thru D3 correspond to
Relay Outputs A thru D.
(0 = Open, 1 = Closed)

3 2 Relay A Pulse Time Remaining.
(unsigned short)

1 to 65535 milliseconds.
(0 = static)

4 2 Relay B Pulse Time Remaining.
(unsigned short)

1 to 65535 milliseconds.
(0 = static)

5 2 Relay C Pulse Time Remaining.
(unsigned short)

1 to 65535 milliseconds.
(0 = static)

6 2 Relay D Pulse Time Remaining.
(unsigned short)

1 to 65535 milliseconds.
(0 = static)

10 bytes Total Length

INTEG process group, inc.

12 jr310 Modbus Protocol Implementation

 External Sensor Type FC – RTD Temperature Module

Item # of Bytes Content Defined Values
1 2 Input Channel 1 (signed short) Signed integer temperature in

degrees Celsius X10.
2 2 Input Channel 2 (signed short) Signed integer temperature in

degrees Celsius X10.
3 2 Input Channel 3 (signed short) Signed integer temperature in

degrees Celsius X10.
4 2 Input Channel 4 (signed short) Signed integer temperature in

degrees Celsius X10.
8 bytes Total Length

Note: Each channel requires the connection of a 2-wire or 3-wire PT100 RTD device. The value
of 32767 (0x7FFF) is returned for unwired channels.

 External Sensor Type FD – 10V Analog Module

Item # of Bytes Content Defined Values
1 2 Input Channel 1 (short)

Read Only
Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

2 2 Input Channel 2 (short)
Read Only

Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

3 2 Input Channel 3 (short)
Read Only

Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

4 2 Input Channel 4 (short)
Read Only

Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

5 2 Output Channel 1 (unsigned short)
Read/Write

Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

6 2 Output Channel 2 (unsigned short)
Read/Write

Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

12 bytes Total Length (6 Modbus Addresses)

Note: Inputs are +/- 10 volts. 0x0000 represents a -10V input and 0xFFF0 a +10V input. 0x8000
therefore represents the 0V input level. Outputs are 0 to 10 volts only. A setting of 0x0000 results
in a 0V output and 0xFFF0 in +10V out. Only the most significant 12 bits are used for the output
channels.

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 13

 External Sensor Type FE – 4-20ma Analog Module

Item # of Bytes Content Defined Values
1 2 Input Channel 1 (unsigned short)

Read Only
Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

2 2 Input Channel 2 (unsigned short)
Read Only

Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

3 2 Input Channel 3 (unsigned short)
Read Only

Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

4 2 Input Channel 4 (unsigned short)
Read Only

Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

5 2 Output Channel 1 (unsigned short)
Read/Write

Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

6 2 Output Channel 2 (unsigned short)
Read/Write

Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

12 bytes Total Length (6 modbus Addresses)

Note: 0x0000 represents a 4 milliamp loop current and 0xFFF0 (thru 0xFFFF) represents 20
milliamps. Scaling is linear. Only the most significant 12 bits are used for the output channels.

For more information concerning ReadBlock content refer to the JNIOR Protocol documentation.

INTEG process group, inc.

14 jr310 Modbus Protocol Implementation

TCP/IP Message Structure

 MBAP Header

The following header is used with each Request, Response or Error message.

Transaction ID 2 Bytes 0x0000 to 0xFFFF
Protocol ID 2 Bytes 0x0000
Length 2 Bytes Count of all Bytes to follow

including Unit ID
Unit ID 1 Byte Ignored
Request/Response/Error Variable As Required

Transaction ID – User defined. JNIOR retransmits this ID number with the associated

Response or Error message.

Protocol ID – Must be 0x0000.

Length – This is the total count of remaining bytes in the message including the Unit ID

byte.

Unit ID – Specifies the Unit ID number. JNIOR represents a single unit and this field is

ignored.

Byte Ordering

When acquiring a multiple-byte numeric value the byte order as transmitted across the network is
important. These numeric values must be properly assembled from the data being received byte-by-byte
through the network connection. The Modbus Protocol uses big-endian byte ordering.

big-endian: adj.
Describes a computer architecture in which, within a given multi-byte numeric representation, the
most significant byte has the lowest address (the word is stored ‘big-end-first’). Most processors,
including the IBM 370 family, the PDP-10, the Motorola microprocessor families, and most of the
various RISC designs are big-endian. Big-endian byte order is also sometimes called network
order.

A format for storage or transmission of binary data in which the most significant bit (or byte)
comes first. The term comes from "Gulliver’s Travels" by Jonathan Swift. The Lilliputians, being
very small, had correspondingly small political problems. The Big-Endian and Little-Endian parties
debated over whether soft-boiled eggs should be opened at the big end or the little end. [Source:
The Network Working Group Internet Glossary RFC 1392]

Java data streams format these numeric values by writing the most significant byte first using big-endian
as is common in the network world. Java applications and applets can easily manipulate values passed
through the Modbus Protocol. C/C++, Visual Basic and similar language programmers need to take extra
care in constructing values as these languages may use the little-endian byte order employed by Intel
processors and the standard Personal Computer.

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 15

Public Function Codes

 01 (0x01) Read Coils

This function obtains the status of the Digital Inputs (Discrete Inputs), Relay Outputs (Coils) and generally
the state of any bit address within the MODBUS data store. Its function is identical to Function Code 02
(0x02) Read Discrete Inputs.

 Request

Function Code 1 Byte 0x01
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Coils 2 Bytes 1 to 2000 (0x7D0)

 Response

Function Code 1 Byte 0x01
Byte Count 1 Byte N*
Coil Status n Bytes n = N or N+1

 *N = Quantity of Outputs / 8, if the remainder is different than 0 then N = N+1

 Error

Function Code 1 Byte Function Code + 0x80
Exception Code 1 Byte 01 or 02 or 03

Example

The following reads the status of the eight Relay Outputs using the Read Coils function. Here we see that
relays 1, 3, 4 and 6 are closed corresponding to the bit set in the returned 0x2D.

The following is the complete exchange. All bytes are in hexadecimal.

Transmit: (12 Bytes)
 00 04 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 06 MBAP: Msg Length (6)
 00 MBAP: Unit ID (X)

 01 Read Coils
 00 08 Starting addr 0008
 00 08 All 8 relays

Receive: (10 Bytes)
 00 04 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 04 MBAP: Msg length (4)
 00 MBAP: Unit ID (X)

 01 Read Coils
 01 Byte Count (1)
 2D 1, 3, 4 & 6 are closed

INTEG process group, inc.

16 jr310 Modbus Protocol Implementation

 02 (0x02) Read Discrete Inputs

This function obtains the status of the Digital Inputs (Discrete Inputs), Relay Outputs (Coils) and generally
the state of any bit address within the MODBUS data store. Its function is identical to Function Code 01
(0x01) Read Coils.

 Request

Function Code 1 Byte 0x02
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Inputs 2 Bytes 1 to 2000 (0x7D0)

 Response

Function Code 1 Byte 0x02
Byte Count 1 Byte N*
Input Status n Bytes n = N or N+1

 *N = Quantity of Outputs / 8, if the remainder is different than 0 then N = N+1

 Error

Function Code 1 Byte 0x82
Exception Code 1 Byte 01 or 02 or 03

Example

The following reads the status of the eight Relay Outputs using the Read Discrete Inputs function. Here
we see that relays 1, 3, 4 and 6 are closed corresponding to the bit set in the returned 0x2D.

The following is the complete exchange. All bytes are in hexadecimal.

Transmit: (12 Bytes)
 00 05 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 06 MBAP: Msg Length (6)
 00 MBAP: Unit ID (X)

 02 Read Discrete
 00 08 Starting addr 0008
 00 08 All 8 relays

Receive: (10 Bytes)
 00 05 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 04 MBAP: Msg length (4)
 00 MBAP: Unit ID (X)

 02 Read Discrete
 01 Byte Count (1)
 2D 1, 3, 4 & 6 are closed

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 17

 03 (0x03) Read Holding Registers

This function obtains the contents of the Digital Input Counters, Usage Meters and generally any 16-bit
word value stored within the MODBUS Data Store. It is equivalent to Function Code 04 (0x04) Read Input
Registers.

For 32-bit or 64-bit values multiple MODBUS Registers are required. The first (lowest address word)
represents the high-order or most significant 16-bits of the value and the highest address word the least
significant 16-bits.

The 32-bit counters and 64-bit usage meters are read one word at a time and the lower address word
should be read first. The JNIOR will sample the entire multi-word value when the lowest address word is
read. This insures that the returned value is accurate should the content advance during the process.

 Request

Function Code 1 Byte 0x03
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 1 to 125 (0x7D)

 Response

Function Code 1 Byte 0x03
Byte Count 1 Byte 2 x N*
Register Value N* x 2 Bytes

 *N = Quantity of Registers

 Error

Function Code 1 Byte 0x83
Exception Code 1 Byte 01 or 02 or 03

Example

The following reads the 32-bit counters for Digital Input 1 and 2 using Read holding Registers. Note that
we must read two Holding Registers for each counter.

This is the complete exchange. All bytes are in hexadecimal.

Transmit: (12 Bytes)
 00 06 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 06 MBAP: Msg length (6)
 00 MBAP: Unit ID (X)

 03 Read Holding Regs
 00 01 Starting addr 0001
 00 04 Register Count (4)

Receive: (17 Bytes)
 00 06 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 0B MBAP: Msg length (11)
 00 MBAP: Unit ID (X)

 03 Read holding Regs
 08 Byte Count (8)
 00 00 04 6E din1 count = 1,134
 00 01 DC B9 din2 count = 122,041

The register at word address 0000 may be used to access the states of the Digital Inputs and Relay
Outputs with one single read. More information may be found under the description for 06 (0x06) Write
Single Register.

INTEG process group, inc.

18 jr310 Modbus Protocol Implementation

 04 (0x04) Read Input Registers

This function obtains the contents of the Digital Input Counters, Usage Meters and generally any 16-bit
word value stored within the MODBUS Data Store. It is equivalent to Function Code 03 (0x03) Read
Holding Registers.

For 32-bit or 64-bit values multiple MODBUS Registers are required. The first (lowest address word)
represents the high-order or most significant 16-bits of the value and the highest address word the least
significant 16-bits.

The 32-bit counters and 64-bit usage meters are read one word at a time and the lower address word
should be read first. The JNIOR will sample the entire multi-word value when the lowest address word is
read. This insures that the returned value is accurate should the content advance during the process.

 Request

Function Code 1 Byte 0x04
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Input Registers 2 Bytes 1 to 125 (0x7D)

 Response

Function Code 1 Byte 0x04
Byte Count 1 Byte 2 x N*
Input Register Value N* x n Bytes

 *N = Quantity of Registers

 Error

Function Code 1 Byte 0x84
Exception Code 1 Byte 01 or 02 or 03

Example

The following reads the 32-bit counters for Digital Input 1 and 2 using Read Input Registers. Note that we
must read two Input Registers for each counter.

This is the complete exchange. All bytes are in hexadecimal.

Transmit: (12 Bytes)
 00 07 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 06 MBAP: Msg length (6)
 00 MBAP: Unit ID (X)

 04 Read Input Regs
 00 01 Starting addr 0001
 00 04 Register Count (4)

Receive: (17 Bytes)
 00 07 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 0B MBAP: Msg length (11)
 00 MBAP: Unit ID (X)

 04 Read Input Regs
 08 Byte Count (8)
 00 00 04 6E din1 count = 1,134
 00 01 DC B9 din2 count = 122,041

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 19

The register at word address 0000 may be used to access the states of the Digital Inputs and Relay
Outputs with one single read. More information may be found under the description for 06 (0x06) Write
Single Register.

INTEG process group, inc.

20 jr310 Modbus Protocol Implementation

 05 (0x05) Write Single Coil

This function opens or closes a single Relay Output and generally sets the state of any bit within the
MODBUS Data Store.

 Request

Function Code 1 Byte 0x05
Output Address 2 Bytes 0x0000 to 0xFFFF
Output Value 2 Bytes 0x0000 or 0xFF00

 Response

Function Code 1 Byte 0x05
Output Address 2 Bytes 0x0000 to 0xFFFF
Output Value 2 Bytes 0x0000 or 0xFF00

 Error

Function Code 1 Byte 0x85
Exception Code 1 Byte 01 or 02 or 03

Example

The following closes Relay Output 5 (bit address 0012). Note that an output value of 0x0000 would open
the relay and 0xFF00 closes it.

This is the complete exchange. All bytes are in hexadecimal.

Transmit: (12 Bytes)
 00 08 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 06 MBAP: Msg Length (6)
 00 MBAP: Unit ID (X)

 05 Write Single
 00 0C Address 0012
 FF 00 Close Relay (set bit)

Receive: (12 Bytes)
 00 08 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 06 MBAP: Msg Length (6)
 00 MBAP: Unit ID (X)

 05 Write Single
 00 0C Address 0012
 FF 00 Close Relay

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 21

 06 (0x06) Write Single Register

This provides access to the 32-bit Counters, Usage Meters and generally any 16-bit word within the
MODBUS Data Store.

For 32-bit or 64-bit values multiple MODBUS Registers are required. The first (lowest address word)
represents the high-order or most significant 16-bits of the value and the highest address word the least
significant 16-bits.

The 32-bit counters and 64-bit usage meters are written one word at a time and the lower address word
should be written first. The JNIOR will write the entire multi-word value when the highest address word is
written. This insures that the value is properly set and does not change should the content advance
during the process.

 Request

Function Code 1 Byte 0x06
Starting Address 2 Bytes 0x0000 to 0xFFFF
Register Value 2 Bytes 0x0000 to 0xFFFF

 Response

Function Code 1 Byte 0x06
Output Address 2 Bytes 0x0000 to 0xFFFF
Register Value 2 Bytes 0x0000 to 0xFFFF

 Error

Function Code 1 Byte 0x86
Exception Code 1 Byte 01 or 02 or 03

Examples

Here we write the value 2,169 to Modbus word address 1000. This is the complete exchange. Byte values
are in hexadecimal.

Transmit: (12 Bytes)
 00 09 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 06 MBAP: Msg Length (6)
 00 MBAP: Unit ID (X)

 06 Write Single Reg
 03 E8 Address 1000
 08 79 Value 2169

Receive: (12 Bytes)
 00 09 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 06 MBAP: Msg Length (6)
 00 MBAP: Unit ID (X)

 06 Write Single Reg
 03 E8 Address Written 1000
 08 79 Value Written 2169

INTEG process group, inc.

22 jr310 Modbus Protocol Implementation

Fast Digital Input and Relay Output Status

Modbus word address 0000 contains both the JNIOR Digital Input status and the Relay Output status
packed as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rout8 rout7 rout6 rout5 rout4 rout3 rout2 rout1 din8 din7 din6 din5 din4 din3 din2 din1
R/W R/W R/W R/W R/W R/W R/W R/W R R R R R R R R

When read, the address returns the full discrete status covering all of the JNIOR digital inputs and relay
outputs.

Controlling 8 Relays Simultaneously

When word address 0000 is read, it returns the full discrete status covering all of the JNIOR digital inputs
and relay outputs. Note carefully that the digital input bits are Read Only. When this address is written the
entire set of eight Relay Outputs may therefore be commanded all at once. The relays change state
simultaneously.

For example this exchange simultaneously opens the odd-numbered relays and closes the even-
numbered relays. All relays change state at exactly the same moment.

Transmit: (12 Bytes)
 00 0A MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 06 MBAP: Msg Length (6)
 00 MBAP: Unit ID (X)

 06 Write Single Reg
 00 00 Address 0000
 AA 00 New relay states

Receive: (12 Bytes)
 00 0A MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 06 MBAP: Msg Length (6)
 00 MBAP: Unit ID (X)

 06 Write Single Reg
 00 00 Address Written 0000
 AA 00 Value Written

The 22 (0x16) Mask Write Register function may be used to command selected sets of relays
simultaneously. This function’s use of logical AND and OR masks provides for very flexible “block” control
of selected relays.

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 23

 14 (0x0E) Read Device Identification

This returns basic device identification. The user-defined 102 (0x66) Read Registry Keys function should
be used to obtain detailed product configuration information. Refer to Function Code 43 (0x2B) for
description.

INTEG process group, inc.

24 jr310 Modbus Protocol Implementation

 15 (0x0F) Write Multiple Coils

This provides access to the Relay Outputs and generally any bit within the MODBUS Data Store. Note
that the Relay Outputs affected by this command DO NOT change state simultaneously.

 Request

Function Code 1 Byte 0x0F
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Outputs 2 Bytes 0x0000 to 0x07B0
Byte Count 1 Byte N* (Must be 0x01)
Outputs Value N* x 1 Byte

 *N = Quantity of Outputs / 8, if the remainder is different from 0 then N = N + 1

 Response

Function Code 1 Byte 0x0F
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Outputs 2 Bytes 0x0000 to 0x07B0

 Error

Function Code 1 Byte 0x8F
Exception Code 1 Byte 01 or 02 or 03

Example

The following opens Relay Outputs 1 through 4. The complete exchange is shown. All bytes are in
hexadecimal.

Transmit: (14 Bytes)
 00 0B MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 08 MBAP: Msg Length (8)
 00 MBAP: Unit ID (X)

 0F Write Multi Coils
 00 08 Starting addr 0008
 00 04 Coil Count (4)
 01 Byte Count (1)
 00 Coil states (all open)

Receive: (12 Bytes)
 00 0B MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 06 MBAP: Msg length (8)
 00 MBAP: Unit ID (X)

 0F Write Multi Coils
 00 08 Starting addr 0008
 00 04 Coil Count (4)

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 25

 16 (0x10) Write Multiple Registers

This provides access to the 32-bit Counters, Usage Meters and generally any 16-bit word within the
MODBUS Data Store.

For 32-bit or 64-bit values multiple MODBUS Registers are required. The first (lowest address word)
represents the high-order or most significant 16-bits of the value and the highest address word the least
significant 16-bits.

The 32-bit counters and 64-bit usage meters are written one word at a time and the lower address word
should be written first. The JNIOR will write the entire multi-word value when the highest address word is
written. This insures that the value is properly set and does not change should the content advance
during the process.

 Request

Function Code 1 Byte 0x10
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 0x0000 to 0x0078
Byte Count 1 Byte 2 x N*
Registers Value N* x 2 Bytes

 *N = Quantity of Registers

 Response

Function Code 1 Byte 0x10
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 1 to 123 (0x7B)

 Error

Function Code 1 Byte 0x90
Exception Code 1 Byte 01 or 02 or 03

Example

This exchange stores the large value 534,210,927 in as a 64-bit value at address 1002. In order to do this
we must write 4 individual 16-bit registers. The Write Multiple Registers function serves that purpose.

The following is the complete exchange. All bytes are in hexadecimal.

Transmit: (21 Bytes)
 00 0C MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 0F MBAP: Msg Length (15)
 00 MBAP: Unit ID (X)

 10 Write Multi Regs
 03 EA Starting Addr 1002
 00 04 Write 4 Regs
 08 Byte Count (8)
 00 00 00 00 Value 534210927
 1F D7 69 6F

Receive: (12 Bytes)
 00 0C MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 06 MBAP: Msg length (6)
 00 MBAP: Unit ID (X)

 10 Write Multi Regs
 03 EA Addr 1002
 00 04 4 Regs Written

INTEG process group, inc.

26 jr310 Modbus Protocol Implementation

 22 (0x16) Mask Write Register

This provides access to the 32-bit Counters, Usage Meters and generally any 16-bit word within the
MODBUS Data Store.

For 32-bit or 64-bit values multiple MODBUS Registers are required. The first (lowest address word)
represents the high-order or most significant 16-bits of the value and the highest address word the least
significant 16-bits.

 Request

Function Code 1 Byte 0x16
Reference Address 2 Bytes 0x0000 to 0xFFFF
And_Mask 2 Bytes 0x0000 to 0xFFFF
Or_Mask 2 Bytes 0x0000 to 0xFFFF

 Response

Function Code 1 Byte 0x16
Reference Address 2 Bytes 0x0000 to 0xFFFF
And_Mask 2 Bytes 0x0000 to 0xFFFF
Or_Mask 2 Bytes 0x0000 to 0xFFFF

 Error

Function Code 1 Byte 0x96
Exception Code 1 Byte 01 or 02 or 03

Example

When used to access word address 0000 and thus modify the relay output states, the Mask Write
Register function can be used to simultaneous change selected relays without affecting the state of
others. The AND MASK is used to select the unaffected relays and the OR MASK is used to define the
new state of the remaining relays.

More information regarding the use of word address 0000 to access both the Digital Inputs and Relay
Outputs can be found under the description for the function 06 (0x06) Write Single Register.

The following example closes Relay Output 1 and Relay Output 7 without affecting the other relays. The
two selected relays close simultaneously.

Transmit: (14 Bytes)
 00 03 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 08 MBAP: Msg Length (8)
 00 MBAP: Unit ID (X)

 16 Mask Write
 00 00 Address (0000)
 BE 00 AND MASK (0xBE00)
 41 00 OR MASK (0x4100)

Receive: (14 Bytes)
 00 03 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 08 MBAP: Msg Length (8)
 00 MBAP: Unit ID (X)

 16 Mask Write successful
 00 00 Address modified
 BE 00 AND MASK used
 41 00 Or MASK used

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 27

With other word addresses the Mask Write Register function is useful in toggling individual bits that may
be used as logical flags without affecting the settings of other flags within the word.

INTEG process group, inc.

28 jr310 Modbus Protocol Implementation

 23 (0x17) Read/Write Multiple Registers

This provides access to the 32-bit Counters, Usage Meters and generally any 16-bit word within the
MODBUS Data Store.

For 32-bit or 64-bit values multiple MODBUS Registers are required. The first (lowest address word)
represents the high-order or most significant 16-bits of the value and the highest address word the least
significant 16-bits.

The 32-bit counters and 64-bit usage meters are written one word at a time and the lower address word
should be read or written first. The JNIOR will sample the entire multi-word value when the lowest
address word is written and write the entire multi-word value when the highest address word is written.
This insures that the value is properly returned and set should the content advance during the process.

 Request

Function Code 1 Byte 0x17
Read Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity to Read 2 Bytes 0x0001 to approx. 0x0076
Write Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity to Write 2 Bytes 0x0001 to approx. 0x0076
Write Byte Count 1 Byte 2 x N*
Write Registers Value N* x 2 Bytes

 *N = Quantity to Write

 Response

Function Code 1 Byte 0x17
Byte Count 1 Byte 2 x N’*
Read Registers Value N’* x 2 Bytes

 *N’ = Quantity to Read

 Error

Function Code 1 Byte 0x97
Exception Code 1 Byte 01 or 02 or 03

Example

This exchange writes the value 1,519 to word address 1000 returning the prior content of that address
which in this case was 2,169.

Transmit: (19 Bytes)
 00 04 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 0D MBAP: Msg Length (13)
 00 MBAP: Unit ID (X)

 17 Read/Write Multi
 03 E8 Read Addr (1000)
 00 01 Read Count (1)
 03 E8 Write Addr (1000)
 00 01 Write Count (1)
 02 Byte Count (2)
 05 EF Value 1519

Receive: (11 Bytes)
 00 04 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 05 MBAP: Msg Length (5)
 00 MBAP: Unit ID (X)

 17 Read/Write Multi
 02 Byte Count (2)
 08 79 Value 2169

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 29

 43 (0x2B) Read Device Identification

This returns basic device identification. The user-defined 102 (0x66) Read Registry Keys function should
be used to obtain detailed product configuration information. This implementation is also available as
Function Code 14 (0x0E) for compatibility.

 Request

Function Code 1 Byte 0x2B
MEI Type 1 Byte 0x0E
Read Device ID Code 1 Byte 01 / 02 / 03 / 04
Object ID 1 Byte 0x00 to 0xFF

 Response

Function Code 1 Byte 0x2B
MEI Type 1 Byte 0x0E
Read Device ID Code 1 Byte 01 / 02 / 03 / 04
Conformity Level 1 Byte
More Follows 1 Byte 00 / FF
Next Object ID 1 Byte
Number of Objects 1 Byte
List Of
 Object ID 1 Byte
 Object length 1 Byte
 Object Value Object length String

 Error

Function Code 1 Byte 0xAB
MEI Type 1 Byte 0x0E
Exception Code 1 Byte 01 or 02 or 03

Object Table

Object ID Object Description Type

0x00 VendorName ASCII String
0x01 ProductCode ASCII String
0x02 MajorMinorRevision ASCII String

INTEG process group, inc.

30 jr310 Modbus Protocol Implementation

Example

This reads the JNIOR OS version string (MajorMinorRevision).

Transmit: (11 Bytes)
 00 05 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 05 MBAP: Msg Length (5)
 00 MBAP: Unit ID (X)

 2B Read Device Ident
 0E MEI 0x0E
 01 Read Device (1)
 02 Object ID (2)

Receive: (24 Bytes)
 00 05 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 12 MBAP: Msg Length (13)
 00 MBAP: Unit ID (X)

 2B Read Device Ident
 0E MEI 0x0E
 01 Read Device (1)
 81 Conformity
 00 No More Follows
 00 Next Object ID (was last)
 01 Count of Objects (1)

 02 MajorMinorRevision Object
 08 String Length (8)
 32 2E 31 31 “2.11.395”
 2E 33 39 35

It is recommended that the special function 102 (0x66) Read Registry Keys be used to obtain detailed
device information in preference to this method.

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 31

User-Defined Functions

The following are Function Codes specific to the JNIOR Modbus implementation.

 100 (0x64) User Login

By default a successful User Login is required to activate the balance of this Modbus implementation.
This Login requirement may be disabled through the Registry.

 Request

Function Code 1 Byte 0x64
UserName Length 1 Byte 1 to 255
UserName Length String
Password Length 1 Byte 0 to 255
Password Length String

 Response

Function Code 1 Byte 0x64
Login ID 1 Byte 0 to 255

 Error

Function Code 1 Byte 0xE4
Exception Code 1 Byte 01 or 02 or 03

If the User Login is unsuccessful then the Login ID of 255 (0xFF) is returned. The Modus implementation
will remain inactive. Login ID values from 127 to 254 indicate administrator status (Registry can be
written).

The User Login may be disabled through the Registry by setting the ModbusServer/Login key to
disabled.

The User Login may take a few seconds to complete. It is therefore recommended that the Modbus
connection not be opened and closed for each command. This will result in slow response. Instead an
open connection can be maintained for faster command response.

 Encoded Password Transfer

The UserName and Password in the above transaction are transferred in clear text. This means that
someone able to monitor network traffic may view packet content and will be able to see your login
information. This may be of concern when communicating with JNIOR over public networks.

Optionally one may encode the combined username:password string (for instance “jdoe:mypass”) using
Base64 encoding as defined by IEC RFC 1521. This renders the login information in a format that is not
easily read by humans. The base64 encoded login string is transferred as the Password and its use is
signified by supplying a blank (zero length) Username string. Note that this a minimal step and by no
means represents true security. It will however minimize the temptation associated with accidentally
discovering a user’s password.

INTEG process group, inc.

32 jr310 Modbus Protocol Implementation

Example

The following transaction successfully logs into the connection using the default administrator’s account.
This is a clear text transmission and it is recommended that the login be performed using the encoded
method for increased security.

This is the complete transaction. All bytes are in hexadecimal.

Transmit: (20 Bytes)
 00 01 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 0E MBAP: Msg Length (14)
 00 MBAP: Unit ID (X)

 64 User Login
 05 Username Length (5)
 6A 6E 69 6F “jnior”
 72
 05 Password Length (5)
 6A 6E 69 6F “jnior”
 72

Receive: (9 Bytes)
 00 01 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 03 MBAP: Msg Length (3)
 00 MBAP: Unit ID (X)

 64 User Login
 80 Success – ID (128)

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 33

 101 (0x65) Pulse Multiple Coils

This provides access to the JNIOR Relay Outputs through MODBUS address assignments 00008 thru
000015 wherein temporary output states can be obtained for selected coils of given durations. Pulse
durations (T) are defined in milliseconds.

 Request

Function Code 1 Byte 0x65
Pulse Count 2 Bytes
List Of
 Starting Address 2 Bytes 0x0000 to 0xFFFF
 Quantity of Outputs 2 Bytes 0x0000 to 0x07B0
 Byte Count 1 Byte Must be 0x01
 Outputs Value 1 Byte
 Pulse Duration 4 Bytes Integer Milliseconds

 Response

Function Code 1 Byte 0x65
Pulse Count 2 Bytes

 Error

Function Code 1 Byte 0xE5
Exception Code 1 Byte 01 or 02 or 03

A Pulse Count of zero (0) causes immediate cancellation of all queued pulse requests and termination of
the currently executing pulse.

This defines a list of pulses that are executed sequentially. All outputs defined within a single pulse
change states simultaneously.

Example

This transaction opens Relay Output 1 and Closes Relay Outputs 2 and 3 simultaneously for 5 seconds.
This is the complete exchange. All byte are in hexadecimal.

Transmit: (20 Bytes)
 00 02 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 0E MBAP: Msg Length (14)
 00 MBAP: Unit ID (0)

 65 Pulse Multi
 00 01 Pulse Count (1)

 00 08 Starting Addr (0008)
 00 03 Quantity of Outputs (3)
 01 Byte Count (1)
 06 Relay 1 off, 2&3 on
 00 00 13 88 5000 milliseconds

Receive: (10 Bytes)
 00 02 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 04 MBAP: Msg Length (4)
 00 MBAP: Unit Id (X)

 65 Pulse Multi
 00 01 Number Queued

INTEG process group, inc.

34 jr310 Modbus Protocol Implementation

102 (0x66) Read Registry Keys

This provides access to the JNIOR Registry. The response contains the unparsed Registry content.

 Request

Function Code 1 Byte 0x66
Number of Keys to Read 2 Bytes 0x0001 to 0xFFFF
List of
 User Assigned ID 2 Bytes
 Key Length 1 Byte 1 to 255
 Key String Key Length String

 Response

Function Code 1 Byte 0x66
Number of Keys Read 2 Bytes 0x0000 to 0xFFFF
List of
 User Assigned ID 2 Bytes From request
 Content Length 1 Byte 0 to 255
 Content String Content Length String

 Error

Function Code 1 Byte 0xE6
Exception Code 1 Byte 01 or 02 or 03

Example

Here we read the $Version Key from the Registry. The assignment of IDs is arbitrary and there to
support parsing only. This is the complete exchange. All byte values are hexadecimal.

Transmit: (21 Bytes)
 00 02 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 0F MBAP: Msg Length (15)
 00 MBAP: Unit ID (X)

 66 Read Registry
 00 01 Key Count (1)

 00 01 Arbitrary ID (1)
 08 String Length (8)
 24 56 65 72 “$Version”
 73 69 6F 6E

Receive: (21 Bytes)
 00 02 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 0F MBAP: Msg Length (15)
 00 MBAP: Unit ID (X)

 66 Read Registry
 00 01 Key Count (1)

 00 01 Assigned ID (1)
 08 String length (8)
 32 2E 31 31 “2.11.395”
 2E 33 39 35

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 35

103 (0x67) Write Registry Keys

This provides access to the JNIOR Registry. The response indicates how many keys were successfully
written. If Login is required then this function will only be successful if the login is for an administrator
account.

 Request

Function Code 1 Byte 0x67
Number of Keys to Write 2 Bytes 0x0001 to 0xFFFF
List of
 Key Length 1 Byte 1 to 255
 Key String Key Length String
 Content Length 1 Byte 0 to 255
 New Content String Content Length String

 Response

Function Code 1 Byte 0x67
Number of Keys Written 2 Bytes 0x0000 to 0xFFFF

 Error

Function Code 1 Byte 0xE7
Exception Code 1 Byte 01 or 02 or 03

Example

The following defines the Test/NewKey Registry Key and assigns the string “written” to it. This is the
complete exchange. All byte values are hexadecimal.

Transmit: (30 Bytes)
 00 03 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 18 MBAP: Msg Length (24)
 00 MBAP: Unit ID (X)

 67 Write Registry
 00 01 Key Count (1)

 0B Key Length (11)
 54 65 73 74 “Test/NewKey”
 2F 4E 65 77
 4B 65 79
 07 Value Length
 77 72 69 74 “written”
 74 65 6E

Receive: (10 Bytes)
 00 03 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 04 MBAP: Msg Length (4)
 00 MBAP: Unit ID (X)

 67 Write Registry
 00 01 Number Written

The new Registry Key has been written (or updated) in the JNIOR Registry. This can be verified through
a Telnet connection and the Registry editor as shown below. Note that there are other means by which
you may work with the Registry. For instance, the standard applets that are supplied with the JNIOR may
be used with an Internet browser to view and edit the Registry.

INTEG process group, inc.

36 jr310 Modbus Protocol Implementation

The following is part of a Telnet session in which we view the Registry Key just created using the 103
(0x67) Write Registry Keys function.

TINI /> registry
JNIOR Registry Editor
Copyright (C) 2005 INTEG process group, inc. All Rights Reserved.
See Help for more information.

Content of /..
 1 $BootTime = Wed Jul 19 14:07:54 GMT 2006
 2 $Model = 310
 3 $SerialNumber = 123456
 4 $Version = 2.11.395
 5 IO/..
 6 IpConfig/..
 7 JniorServer/..
 8 Test/..
 9 <exit>

Key (or ## selection) to Add/Edit/Remove? 8

Content of Test/..
 1 NewKey = written
 2 <previous>

Key (or ## selection) to Add/Edit/Remove?

TINI />

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 37

 104 (0x68) Pulse Multiple Coils with Mask

This provides access to the JNIOR Relay Outputs through MODBUS address assignments 00008 thru
000015 wherein temporary output states can be obtained for selected coils of given durations. Pulse
durations (T) are defined in milliseconds. Only those outputs with Mask value of 1 will be affected by the
command.

 Request

Function Code 1 Byte 0x68
Pulse Count 2 Bytes
List Of
 Starting Address 2 Bytes 0x0000 to 0xFFFF
 Quantity of Outputs 2 Bytes 0x0000 to 0x07B0
 Byte Count 1 Byte Must be 0x01
 Mask Output Select 1 Byte
 Outputs Value 1 Byte
 Pulse Duration 4 Bytes Integer Milliseconds

 Response

Function Code 1 Byte 0x68
Pulse Count 2 Bytes

 Error

Function Code 1 Byte 0xE8
Exception Code 1 Byte 01 or 02 or 03

This defines a list of pulses that are executed sequentially. All outputs defined within a single pulse
change states simultaneously. A Pulse Count of zero (0) causes immediate cancellation of all queued
pulse requests and termination of the currently executing pulse.

Example

The following pulses relay outputs 1 and 3 for 5 seconds while not affecting relay output 2. Note that the
output state for relay 2 in the command is ignored as the corresponding mask bit is not set. The return is
immediate. The pulse completes 5 seconds later.

The complete exchange is shown below. All bytes are shown in hexadecimal.

Transmit: (21 Bytes)
 00 02 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 0F MBAP: Msg Length (15)
 00 MBAP: Unit ID (X)

 68 Pulse Multi w/Mask
 00 01 1 Pulse Requested

 00 08 Starting addr 0008
 00 03 relay count is 3
 01 must be 1
 05 Addr 8 and 10 selected
 07 Set 8, 9 and 10
 00 00 13 88 5000 milliseconds

Receive: (10 Bytes)
 00 02 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 04 MBAP: Msg Length (4)
 00 MBAP: Unit ID (X)

 68 Pulse Multi w/Mask
 00 01 1 Pulse Queued

INTEG process group, inc.

38 jr310 Modbus Protocol Implementation

 105 (0x69) Write Multiple Coils with Mask

This provides access to the JNIOR Relay Outputs through bit address assignments 00008 thru 000015 as
well as bit states throughout the MODBUS Data Store. Only outputs with Mask value of 1 are affected by
the command.

 Request

Function Code 1 Byte 0x69
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Outputs 2 Bytes 0x0000 to 0x07B0
Byte Count 1 Byte N*
Mask Output Select N* x 1 Byte
Outputs Value N* x 1 Byte

 *N = Quantity of Outputs / 8, if the remainder is different from 0 then N = N + 1

 Response

Function Code 1 Byte 0x69
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Outputs 2 Bytes 0x0000 to 0x07B0

 Error

Function Code 1 Byte 0xE9
Exception Code 1 Byte 01 or 02 or 03

Note that the outputs affected by this command DO NOT change state simultaneously. If a simultaneous
state change is required then 23 (0x17) Read/Write Multiple Registers must be used.

Example

The following closes relay outputs 4 and 6 while not affecting relay output 5. Note that the output state for
relay 5 is ignored as the corresponding mask bit is not set.

The complete exchange is shown below. All bytes are in hexadecimal.

Transmit: (15 Bytes)
 00 03 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 09 MBAP: Msg length (9)
 00 MBAP: Unit ID (X)

 69 Write Multi w/Mask
 00 0B Starting addr 0011
 00 03 Coil Count (3)
 01 byte count (1)
 05 Addr 11 & 13 selected
 07 Setr 11, 12, and 13

Receive: (12 Bytes)
 00 03 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 06 MBAP: Msg Length (6)
 00 MBAP: Unit ID

 69 Write Multi w/Mask
 00 0B Starting Addr (11)
 00 03 Coil Count (3)

 INTEG process group, inc.

jr310 Modbus Protocol Implementation 39

Modbus Exception Responses

Should there be a problem with a Request an Exception Response will be returned. The following
describes the possible codes.

Code Name Meaning
01 ILLEGAL FUNCTION The function code received in the query is not an allowable

action for the server at this time. This may be because a
Login is required before the function may be used. It may be
because the function is not part of this implementation.

02 ILLEGAL DATA ADDRESS The data address received in the query is not an allowable
address for the server. More specifically, the combination of
reference number and transfer length is invalid.

03 ILLEGAL DATA VALUE A value contained in the query data field is not an allowable
value for the server. This indicates a fault in the structure of
the remainder of a complex request, such as that the implied
length is incorrect.

Example

The following transaction attempts to read a Holding Register outside of the available Modbus Data Store.
This results in an expected Modbus Exception Response.

Transmit: (12 Bytes)
 00 02 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 06 MBAP: Msg Length (6)
 00 MBAP: Unit ID (X)

 03 Read Holding Register
 1F 40 Address 8000 (bad)
 00 01 Register Count (1)

Receive: (9 Bytes)
 00 02 MBAP: Trans ID
 00 00 MBAP: Protocol ID (0)
 00 03 MBAP: Msg Length (3)
 00 MBAP: Unit ID (X)

 83 Func Code OR’d with 0x80
 02 Illegal Data Address

Refer to the example for 03 (0x03) Read holding Registers to see the difference in a successful
transaction.

