

JNIOR Communications Protocol

Dated January 7, 2015

 (Series 4 JANOS v1.0.6 and later)

Copyright Copyright  2015 INTEG Process Group, Inc.
 All rights reserved.

Notice Every effort was made to make this document as accurate and useful as practical at

the time of writing. INTEG Process Group reserves the right to alter the information
presented herein as well as the function of the JNIOR product at any time without
prior notice. All information is subject to change.

Trademarks Trademarks are the property of their respective holders.
 1-Wire is a registered trademark of Dallas Semiconductor.

Use Restrictions This document, all related documents and the software contained in the JNIOR are

copyrighted by INTEG Process Group, Inc. and may not be copied or reproduced
without prior consent from INTEG Process Group, Inc.

INTEG Process Group, Inc.
2919 East Hardies Road, First Floor
Gibsonia, PA 15044

www.integpg.com

JNIORsales@integpg.com

PH (724) 933-9350
FAX (724) 443-3553

http://www.integpg.com/
mailto:Jniorsales@integpg.com

INTEG Process Group, Inc.

2 JNIOR Protocol Specification

Contents

Revision History .. 4
Connection .. 6
Message Structure .. 6
Connection Maintenance (Keep Alive) ... 6
CRC16 Error Check ... 6
Character Strings .. 7
Numeric Formatting .. 7

Byte Ordering .. 8
Device Identification (IDs) ... 9
Introduction to a JNIOR protocol Connection ... 10

Example Messages .. 10
Message Specification .. 12

Monitor Message – Message Type 1 ... 14
Extended Monitor Message – Message Type 2 .. 15
Request – Message Type 5 ... 16
STARTTLS – TLS Secured Communications ... 16
Textual Response – Message Type 3 ... 17
Date & Time Response – Message Type 6 ... 17
Set Clock Message – Message Type 7 .. 17
Usage Meter Response – Message Type 8 ... 18
Command Message – Message Type 10... 19
ReadRegistryKeys – Message Type 11 .. 21
ReadRegistryKeys Response – Message Type 12 ... 21
WriteRegistryKeys – Message Type 13 .. 22
WriteRegistryKeys Response – Message Type 14 ... 22
SubscribeRegistryKeys – Message Type 15 .. 22
ListRegistry – Message Type 16 ... 23
ListRegistryResponse – Message Type 17 .. 23
UnsubscribeRegistryKeys – Message Type 18 .. 24
ReadDevices – Message Type 21.. 25
ReadDevicesResponse – Message Type 22 ... 25
Read Device Block Structures .. 26

jr310 Digital Inputs (din1 – din8) Read Block ... 26
jr310 Relay Outputs (rout1 – rout8) Read Block .. 26
External Sensor Type 10 – Temperature Probe Read Block 26
External Sensor Type 12 – Dual Addressable Switch Read Block 27
External Sensor Type 1D – 4kbit RAM with Counter Read Block 27
External Sensor Type 20 – Quad A/D Converter Read Block 27
External Memory Type 23 – 512 Byte EEPROM Memory 27
External Sensor Type 26 – Smart Battery Monitor Read Block 28
External Sensor Type 28 – Temperature Probe Read Block 28
External Sensor Type 2C – Digital Potentiometer Read Block 29
External Device Type F9 – 3-Channel LED Dimmer .. 30
External Device Type FA – Rack Mounted User Panel (A1) Read Block.............. 30
External Sensor Type FB – 4ROUT Digital Module Read Block 31
External Sensor Type FC – RTD Temperature Module Read Block 31

 INTEG Process Group, Inc.

JNIOR Protocol Specification 3

External Sensor Type FD – 10V Analog Module Read Block 32
External Sensor Type FE – 4-20ma Analog Module .. 32

WriteDevices – Message Type 23 ... 33
WriteDevices Response – Message Type 24 .. 33
Write Device Block Structures .. 34

jr310 Digital Inputs (din1 – din8) Write Block ... 34
jr310 Relay Outputs (rout1 – rout8) Write Block .. 34
External Sensor Type 12 – Dual Addressable Switch Write Block 34
External Memory Type 23 – 512 Byte EEPROM Memory 35
External Sensor Type 26 – Smart Battery Monitor Write Block 35
External Sensor Type 2C – Digital Potentiometer Write Block 36
External Device Type F9 – 3-Channel LED Dimmer .. 37
External Device Type FA – Rack Mounted User Panel (A1) Write Block 39
External Sensor Type FB – 4ROUT Digital Module Write Block 41
External Sensor Type FD – 10V Analog Module Write Block 42
External Sensor Type FE – 4-20ma Analog Module Write Block 43

SubscribeDevices – Message Type 25 ... 44
EnumerateDevices – Message Type 26 .. 45
EnumerateDevicesResponse – Message Type 27 ... 45
UnsubscribeDevices – Message Type 28 ... 45
GetExternalValue – Message Type 29 .. 46
GetExternalValueResponse – Message Type 30 .. 46
SetExternalValue – Message Type 31 ... 47
SetExternalValueResponse – Message Type 32 .. 47
NonceRequest – Message Type 128 ... 48
NonceResponse – Message Type 127 .. 48
LoginRequest – Message Type 126 .. 48

Anonymous Login ... 49
Encoded Password Transfer ... 49

Login Acknowledgement – Message Type 125 .. 49
Custom Command Response – Message Type 254 ... 50
Custom Command – Message Type 255 .. 50

CRC-16 Algorithm ... 51
Example Transactions .. 52
CRC Test Strings .. 54

INTEG Process Group, Inc.

4 JNIOR Protocol Specification

Revision History

Date OS Version Change Description

6/3/2005 v2.01.655 Added the ability to request the Usage Meter content using the Status
Request Message (Message Type 5 – Request #2), the ability to reset input
and output Usage Meters using the Command Message (Message Type 10 –
Commands #8 and #9), and the Usage Meter Response message (Message
Type 8). The latter reporting all Usage Meters in millisecond long format.

7/18/2005 v2.02.3 Added JNIOR Protocol functions to return lists of Registry sections and keys.
A ListRegistry (Message Type 16) request is used to obtain a list of the
entries for any node in the Registry. Those are supplied by the
ListRegistryResponse (Message Type 17). Added Reboot function to the
Request (Message Type 5 – Request 3).

9/9/2005 v2.03.60 Added Read/Write/Subscribe Device protocol structure. Dropped support for
the jr200. Added ability to disable/enable unsolicited Monitor Message
transmission to the Request message (type 5). Added block relay controls to
the Command message (type 10) allowing relays to be commanded
simultaneously. Support added for external sensor types Temperature (10),
Dual Addressable Switch (12), Counters (1D), Quad A/D Converter (20),
Temperature (28), and Digital Potentiometer (2C).

12/6/2005 v2.03.174 Added support for external EEPROM Memory (23). This component is used
to store configuration information for INTEG I/O Net modules.

12/22/2005 v2.03.225 Added login extensions to LoginRequest (message type 126) supporting
anonymous and encoded login options.

5/3/2006 v2.11.261 Extended Digital Input and Relay Output device Read Blocks to include the
Usage Alarm status. This extends the each by one (1) byte.

6/9/2006 v2.11.269 Added device types for the 4-20ma and 10V analog modules.

9/17/2006 v2.12.51 Support added for DS2438 Smart Battery Monitor external device.

8/8/2007 v2.13.86 Added support for the 4-channel RTD analog temperature module.

4/8/2008 v2.14.17 Added support for the 4 relay digital output module with pulse capability.

3/20/2009 v3.1.3 ROUT9 – ROUT16 using 1 or 2 relay expansion boards was added to the
Command Message (type 10). Added Custom Command Support for
communications from Ethernet applications using the JNIOR Protocol to
external applications running on the JNIOR. Added support for external
device channel assignments in messsages (types 29 – 32). Up to 2 external
devices total may be connected.

2/24/2011 v4.1 Added support for the JNIOR 19” Rack User/Automation Panel (Standard
and Enhanced models).

 INTEG Process Group, Inc.

JNIOR Protocol Specification 5

Date OS Version Change Description

11/22/2-13 v4.1.1 Add support for STARTTLS (See Message Type 5).

INTEG Process Group, Inc.

6 JNIOR Protocol Specification

Connection

The JNIOR protocol connection is connection oriented using the TCP/IP protocol. By default the
connection is made over port 9200. This is configurable via the use of the JniorServer/Port registry

key. Multiple connections can be made to the JNIOR. There is a performance hit for each connection
made as well as the number of items subscribed to. Item subscriptions can be IO or registry keys.

Since 3.3. In addition to making a connection to the JNIOR protocol server, the JNIOR protocol server
can be configured to make a connection to one remote host. This is configured through the
JniorServer/RemoteIP and JniorServer/RemotePort registry keys. The connection is tried

every 30 seconds until it is established. If the connection is lost then the connection attempts are
resumed. This does not require a reboot.

Message Structure

Each of the following messages (regardless of its source) is transmitted with the following header. If the
supplied CRC16 does not match that calculated from the included data then the message should be
ignored.

Item # of Bytes Content Defined Values

1 1 Start of header 0x01 (always)

2 2 Length (Short) N - Count of data bytes in the
message

3 2 CRC16 (Short) CRC for the following message

4 N Message as defined below

Connection Maintenance (Keep Alive)

Connections that are not closed properly can linger. Under certain circumstances the server may not be
aware that the client has improperly dropped the connection. This can happen if the client device or
system is interrupted by the loss of power, reset or otherwise unplugged from the network.

The JNIOR continues to service such connections and if after 15 minutes there has not been any
communications from the client (neither command nor acknowledgement) the connection will be dropped.
This frees resources in the JNIOR system and readies the JNIOR for additional connections. It that time it
is quite possible that the disconnected device or system has reconnected using a new socket.

In order to keep a quiet connection from dropping the client should transmit a single ACK byte (0x06)
periodically. This is acceptable at any time when the JNIOR would otherwise be ready to receive a
command from the client. The JNIOR must receive this ACK byte or some other message from the client
within 15 minutes of any prior ACK or command message or the connection will be assumed dead and it
will be dropped.

CRC16 Error Check

A 16-bit Circular Redundancy Check is used. This calculation is made using only the Message content (N
bytes that follow the CRC16 entry).

As it is the implementer’s option to ignore the CRC16 on incoming messages, it is also optional for
outgoing messages. A CRC16 value of 0xFFFF (-1) will bypass the CRC verification in the JNIOR. This is
highly useful during development where it may be desirable to first demonstrate function and latter insure
accuracy by enabling the error check.

 INTEG Process Group, Inc.

JNIOR Protocol Specification 7

Since the JNIOR will happily ignore the CRC16 value if it is set to 0xFFFF (-1) the client should return the
favor. A CRC16 value of 0xFFFF (-1) received from JNIOR should bypass the client’s error check. By
design this should never occur as JNIOR carefully provides a valid CRC16 value with all transmissions. A
symmetrical implementation is recommended for possible future compatibility.

It is highly recommended that the proper Circular Redundancy Check be implemented. An example Java
program to generate the CRC is supplied later in this document.

Character Strings

All character strings are encoded with a single byte prefix defining the number of characters to follow. A
US_ASCII character set is used. Where Strings appear in the following messages their length is indicated
as being variable. In fact the encoded string uses one byte more than the number of characters. For
example the string “Hello World” will be transmitted in order from left to right as follows:

0x0B ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ‘ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’

Numeric Formatting

The header and messages may contain multiple-byte numeric values which are generally unsigned
integer values although other formats may be used. The following formats are referenced:

byte Single byte representing

0x00 to 0xFF (hexadecimal)
0 to 255 (unsigned)
-128 to -127 (signed)

Used typically for string lengths.

short 2-Byte integer value representing

0x0000 to 0xFFFF (hexadecimal)
0-65535 (unsigned)
-32768 to 32767 (signed).

Used typically for message lengths, CRC16 error checks, integer counts and
identifiers.

int 4-Byte integer value representing

0x00000000 to 0xFFFFFFFF (hexadecimal)
0 to 4294967295 (unsigned)
-2147483648 to 2147483647 (signed)

Used typically for long term tallies and time intervals.

INTEG Process Group, Inc.

8 JNIOR Protocol Specification

long 8-Byte integer value representing

0x0000000000000000 to 0xFFFFFFFFFFFFFFFF (hexadecimal)
0 to 2^64-1 (unsigned)
-2^63 to 2^63-1 (signed)

Used typically for absolute time and date.

double 8-byte value in IEEE 754 64-bit double-precision binary floating-point format.

Care must be taken to properly read, write, promote and calculate integers supplied through this protocol
using signed or unsigned values as appropriate. The automatic sign extension that might occur when
casting a byte value into an int integer value or a short integer value into an int integer value can raise
havoc with protocol processing.

Byte Ordering

When acquiring a multiple-byte numeric value the byte order as transmitted across the network is
important. Clearly the bytes of an integer value when taken in reverse order will result in a dramatically
different value. These numeric values must be properly assembled from the data being received byte-by-
byte through the network connection. The JNIOR Protocol uses big-endian byte ordering.

big-endian: adj.
Describes a computer architecture in which, within a given multi-byte numeric
representation, the most significant byte has the lowest address (the word is stored ‘big-
end-first’). Most processors, including the IBM 370 family, the PDP-10, the Motorola
microprocessor families, and most of the various RISC designs are big-endian. Big-
endian byte order is also sometimes called network order.

A format for storage or transmission of binary data in which the most significant bit (or
byte) comes first. The term comes from "Gulliver’s Travels" by Jonathan Swift. The
Lilliputians, being very small, had correspondingly small political problems. The Big-
Endian and Little-Endian parties debated over whether soft-boiled eggs should be
opened at the big end or the little end. [Source: The Network Working Group Internet
Glossary RFC 1392]

Java data streams format these numeric values by writing the most significant byte first using big-endian
as is common in the network world. Java applications and applets can easily manipulate values passed
through the JNIOR Protocol. C/C++, Visual Basic and similar language programmers need to take extra
care in constructing values as these languages use the little-endian byte order employed by Intel
processors and the standard Personal Computer.

 INTEG Process Group, Inc.

JNIOR Protocol Specification 9

Device Identification (IDs)

Each JNIOR input and output can be envisioned as an independent device. This would also include any
additional components connected to the external Sensor Port. Each device is assigned a permanent
identification. This is an unsigned 64-bit (8 byte) value. For external devices the ID may be obtained from
its labeling, documentation or through discovery using the EnumerateDevices request.

The IDs may convey additional information about the device. The least significant byte of the ID for those
external devices connected through the sensor port provides an indication of the device type (one-wire
devices). The internal device IDs (type FF) are assigned as follows:

jr310 Internal Devices

Inputs

din1 0x00000000000001FF

din2 0x00000000000002FF

din3 0x00000000000003FF

din4 0x00000000000004FF

din5 0x00000000000005FF

din6 0x00000000000006FF

din7 0x00000000000007FF

din8 0x00000000000008FF

Outputs

rout1 0x00000000000101FF

rout2 0x00000000000102FF

rout3 0x00000000000103FF

rout4 0x00000000000104FF

rout5 0x00000000000105FF

rout6 0x00000000000106FF

rout7 0x00000000000107FF

rout8 0x00000000000108FF

rout9 0x00000000000109FF

rout10 0x0000000000010AFF

rout11 0x0000000000010BFF

rout12 0x0000000000010CFF

rout13 0x0000000000010DFF

rout14 0x0000000000010EFF

rout15 0x0000000000010FFF

rout16 0x00000000000110FF

INTEG Process Group, Inc.

10 JNIOR Protocol Specification

Introduction to a JNIOR protocol Connection

This section is an introduction into the methods and logistics for communicating from an application
residing on a personal computer (or other device) with the JNIOR 310 utilizing the JNIOR Protocol over
an Ethernet network using TCP. This document is an introduction to the more detailed document
describing the JNIOR Protocol. The JNIOR Protocol document describes the various communication
messages that are sent back and forth between the JNIOR and an application over the Ethernet to read
and write to the JNIOR I/O and other settings.

The JNIOR device acts as a server for the TCP communications. The default setting is for the JNIOR to
listen and accept connections coming in over the Ethernet on port 9200. [NOTE: This port is a
configurable setting that can be altered via the JNIOR registry. The registry key for this setting is
JniorServer/Port. The registry key can be changed from the main JNIOR web page and/or via a Telnet
window using the Registry editor. These are further described in the JNIOR Web Based Interface Manual
and Command Line Communications Manual.] The remote application makes the initial contact with the
JNIOR by creating a socket connection to the JNIOR. In order to receive a response from the JNIOR,
you must either successfully login or disable login by modifying the appropriate JNIOR Registry setting.
After a successful login, the JNIOR automatically sends out the Monitor message with any changes in the
I/O state. The Monitor message contains the status of all the I/O and is described in the JNIOR Protocol
document. The remote application can parse this message and get the desired information.

The following is a summary of what a programmer should initially expect when implementing the JNIOR
protocol.

1. Establish a socket connection over port 9200 and login with a valid user name and password
(message type 126). “jnior”, “jnior” is the default admin user name and password.

2. Based on the login user name and password, the JNIOR will reply with the login
acknowledgement message (message type 125) alerting the application of the security level
granted.

3. The JNIOR will issue a Monitor message (message type 1). This monitor message has
information about the JNIOR and the current I/O states.

Once connected and logged in, the application can communicate with the JNIOR by following the JNIOR
protocol and issuing any of the commands. The login is necessary before any commands are sent to the
JNIOR with the exception of registry reads (message type 11).

Please note, that when you send an I/O command to the JNIOR, a Monitor message (type 1) does not
automatically get returned. The Monitor message (message type 1) only gets returned after I/O
commands that actually cause the I/O states to alter. The Monitor message is automatically issued with
each change in I/O state unless the Monitor message was disabled.

For those requiring finer control of the Ethernet messages, the user application can issue a command to
the JNIOR disabling the Monitor message using the Request message (type 5) for the current connection
(it is not global for all connections, only for this particular connection because multiple connections can be
made to the JNIOR at the same time). The user would then issue a command to Subscribe (message
type 15) to various I/O points. The JNIOR will then notify this particular connection of the change in the
subscribed to I/O points.

If you need to continuously interact with the JNIOR I/O, it is better to leave the connection open.
However, the JNIOR has a 15 minute timeout such that if it doesn’t see any activity on a particular
connection, it will close the connection. This is a failsafe so that unused connections do not build on the
JNIOR should the Ethernet link be physically broken or the other application stop. In order to keep the
connection active, a “keep alive” message needs to be sent to the JNIOR approximately ever 10 minutes.
This is described in the JNIOR Protocol document on page 5 – Connection Maintenance (Keep Alive).

Example Messages

 INTEG Process Group, Inc.

JNIOR Protocol Specification 11

The following example messages were captured using WireShark, formerly Ethereal. WireShark is an
exceptional tool for debugging the implementations of communication protocols. This gives you a sample
of the format of the messages you will be receiving and sending.

Monitor (message type 1)
01 00 60 68 85 01 0e 6a 72 33 31 30 20 76 32 2e ..`h...j r310 v2.
31 34 2e 31 37 00 00 00 00 00 00 00 00 00 00 00 14.17...
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01
19 33 ca 9f eb .3...

Login Request Message (type 126)
01 00 0d 60 b7 7e 05 6a 6e 69 6f 72 05 6a 6e 69 ...`.~.j nior.jni
6f 72 or

Login Response Message (type 125)
01 00 02 f0 20 7d 80 }.

Read Registry Keys Message (type 11)
01 00 13 be 61 0b 00 01 00 de 0d 24 53 65 72 69a... ...$Seri
61 6c 4e 75 6d 62 65 72 alNumber

Registry Response Message (type 12)
01 00 0f 9e d2 0c 00 01 00 de 09 31 30 35 31 3010510
30 33 32 38 0328

INTEG Process Group, Inc.

12 JNIOR Protocol Specification

Message Specification

A number of messages are available as payload within the JNIOR Protocol. These messages will be
either transmitted by the JNIOR or received by JNIOR following the Message Header. The following are
available.

Message Type Description

1
Monitor Message

1

JNIOR sends this message when a connection is logged in and then afterwards
whenever the status changes (input or output changes state).

2
External Monitor Message

1

JNIOR sends this message when the digital expansion I/O is being used. This
message is sent whenever the status of any digital I/O (internal or external) changes.

3
Textual Response
JNIOR supplies a general textual message. These messages may contain one of
more lines terminated with newline characters (single LF 0x0A).

5
Request

1

Requests action from JNIOR. JNIOR replies with the appropriate response.

6
DateTime Response
JNIOR sends this message in response to a DateTime Status request.

7
Set Clock Command

1

Provides a means to set the JNIOR clock.

8
Usage Meter Response
Reports the high resolution usage meter content.

10
Command Message

1

This message is sent to the JNIOR to request various actions such as, for example, a
change in output state.

11
ReadRegistryKeys
A request sent to JNIOR listing the Registry Keys for which values are needed. The
client assigns IDs to each key to facilitate processing the response.

12

ReadRegistryKeys Response
The list of Registry Key values along with the associated ID sent by JNIOR in
response to a ReadRegistryKeys request. Note that values are returned ONLY for
existing keys. It is the client’s responsibility to assign default values for those keys not
present. This message is also sent unsolicited when Registry subscriptions are used.

13
WriteRegistryKeys

2

A list sent to JNIOR containing pairs of Registry Keys and values. JNIOR updates the
Registry with the new Key content.

14
WriteRegistryKeys Response
JNIOR acknowledges a WriteRegistryKeys request with this message.

15

SubscribeRegistryKeys
A request sent to JNIOR listing the Registry Keys of which values are needed. The
format of this request is identical to the ReadRegistryKeys request and JNIOR sends
the ReadRegistryKeys Response. Subsequently should the values for any of those
keys change, JNIOR will send another ReadRegistryKeys Response message with the
updated values. The subscriptions are cancelled when the connection is closed.

16
ListRegistry

2

A request sent to JNIOR to obtain the list of Registry Sub-sections and key names
present at the specified section node.

17
ListRegistryResponse
JNIOR responds to a ListRegistry request with this message.

18
UnsubscribeRegistryKeys
This command is used to unsubscribe from previously subscribed registry keys.

21
ReadDevices

1

A request sent to JNIOR to obtain device status/content for one or more device IDs.
Both internal and external I/O is supported.

 INTEG Process Group, Inc.

JNIOR Protocol Specification 13

Message Type Description

22
ReadDevicesResponse
Message contains the device status/content for each requested by ReadDevices. This
will also be sent unsolicited when SubscribeDevices is used.

23
WriteDevices

1

Provides new status/content for one or more devices. This is used to command
outputs or to configure devices.

24
WriteDevicesResponse
JNIOR acknowledges a WriteDevices request with this message.

25

SubscribeDevices
1

A request sent to JNIOR requesting the status/content of one of more devices. The
format of this request is identical to the ReadDevices request and JNIOR sends the
ReadDevices Response. Subsequently should the status for any of those devices
change, JNIOR will send another ReadDevicesResponse message with the updated
status/content. The subscriptions are cancelled when the connection is closed.

26
EnumerateDevices

2

A request sent to JNIOR for an enumeration of available devices.

27
EnumerateDevicesResponse
JNIOR responds to an EnumerateDevices with a list of active device IDs present in the
current hardware configuration. This contains both internal and external devices.

28
UnsubscribeDevices

This will unsubscribe the given devices from the current connection

29

GetExternalValue
Each connected external device can be enumerated by the JNIOR OS and
assigned channel numbers. This command allows a user to request a value
by channel number for a device type

30

GetExternalValueResponse
JNIOR responds with the scaled value of the desired IO. The scaling
information can be set in the registry or by the JNIOR Web Page. Outputs
are returned on a scale of 0 – 100%

31

SetExternalValue
Each connected external device can be enumerated by the JNIOR OS and
assigned channel numbers. This command allows a user to set a value by
channel number for a device type. Outputs are entered on a scale of 0 –
100%

32

SetExternalValueResponse
JNIOR responds with the scaled value of the desired IO. The scaling
information can be set in the registry or by the JNIOR Web Page. The
returned value mimics the set value.

125
Login Acknowledgement
Sent by JNIOR in response to a LoginRequest.

126
LoginRequest

3

Provides a username and password (clear text) for login. The user must be valid
previously assigned.

1
 By default requires successful Login.

2
 By default requires successful Login by administrator.

3
 Requirement may be disabled using the JniorServer/Login Registry key.

INTEG Process Group, Inc.

14 JNIOR Protocol Specification

Monitor Message – Message Type 1

Note that the Monitor Message is NOT fixed-length. The version string is variable length and will change
with software version. Therefore, the location of any particular I/O status relative to the start of the
message will vary. The location of the I/O information may be calculated using the length of the version
string which is always the second byte in the message. Recall that strings are sent with a preceding
length byte.

Item # of Bytes Content Defined Values

1 1 Message Type (1 = Monitor message from
JNIOR)

2 Variable JNIOR Software Version (String) “jrNNN #.##.####”
where NNN indicates the Model
Number and # digits in the current
OS version.

Following Block (Items 3-7) Repeated For Each DIN1 – DIN8

3 1 Present State 0 = Off, 1 = On

4 1 Alarm State 1 = alarm

5 4 Count (int)

6 1 Count Alarm 1 1 if Count exceeds Alarm 1

7 1 Count Alarm 2 1 if Count exceeds Alarm 2

Following Item (8) Repeated For Each ROUT1 – ROUT8

8 1 Present State 0 = Open, 1 = Closed

9 8 Date and Time (long) Number of milliseconds since
January 1, 1970 00:00:00 GMT

 INTEG Process Group, Inc.

JNIOR Protocol Specification 15

Extended Monitor Message – Message Type 2

The External Monitor Message is available for the Model 312/412 to report relay states for ROUT9
through ROUT12 and also when external digital expansion I/O modules (4ROUT) are used. The
message is sent whenever the status of any digital I/O (internal or external) changes.

Item # of Bytes Content Defined Values

1 1 Message Type (2 = External Monitor message
from JNIOR)

2 1 Count The number of digital INPUTS on
the Expansion Modules. FUTURE
USE so value should be 0.

Following Item (3) Repeated For Each DIN9 – DIN16 (FUTURE Digital Inputs)

3 1 Present State 0 = Off, 1 = On (FUTURE)

4 1 Count The number of relay OUTPUTS on
the Expansion Modules. (value
will be 4 or 8)

Following Item (5) Repeated For Each ROUT9 – ROUT16 (Digital Outputs)

5 1 Present State 0 = Open, 1 = Closed, 0xFF
Inactive

6 8 Date and Time (long) Number of milliseconds since
January 1, 1970 00:00:00 GMT

The JNIOR automatically determines the number of inputs or outputs available for the specific JNIOR
model and the available Expansion Modules.

The associated Relay Output number (9 through 16) is determined by the JNIOR based on the order the
modules are recognized by the JNIOR on the initial boot-up (Series 3). Refer to the EXTERN command
for Series 4 JANOS based units.

The Series 3 units configure the external 4ROUT assignments at boot. Here are several scenarios:

 If the user connects 1 Relay Output Expansion Module to the Sensor Port and then applies power
to the JNIOR (or reboots it) the JNIOR will assign the 4 relay outputs as outputs 9 – 12.

 If the user then adds a second Relay Output Expansion Module and reboots the JNIOR, the
JNIOR will assign the outputs on the second module as 13 – 16.

 If the user disconnects the first module and reboots the JNIOR, the JNIOR will continue to
maintain the addresses of the second module as outputs 13 – 16.

 If the user re-connects the original first expansion module (or a different one) and reboots, the
JNIOR will assign these outputs as 9 – 12.

 If the user unplugs all expansion modules and reboots, the numbering process will start over
again the next time an expansion module is added.

The Series 4 units configure 4ROUT assignments as the units are first seen. You may reset the
assignments using the EXTERN command at the command line or through Registry modifications.

INTEG Process Group, Inc.

16 JNIOR Protocol Specification

These methods were implemented to allow the user to add new modules or change failed modules
without requiring software changes.

The relay output numbering sequence being used for each expansion module is stored and displayed as
a Registry Key in the JNIOR. For the Relay Output Expansion Modules, the keys are viewed in the
IO/Outputs registry folder (Series 3) or the Externals/DeviceOrder registry folder (Series 4).

Request – Message Type 5

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 5 = Request message

2 2 Request (short) 0 = Date and Time
1 = Monitor Message Request
2 = Usage Meter Request
3 = Reboot Request
4 = Disable Monitor Messages
5 = Enable Monitor Messages
6 = STARTTLS

3 4 Interval (int)
Required for Monitor Message
Request

Defines an interval in milliseconds.
0 indicates infinity.

The Interval field is optional and may or may not be included in messages. It is used with the Monitor
Message Request to specify a new interval in milliseconds at which Monitor Messages will be sent. By
default a Monitor Message is transmitted upon initial login (or connection if login disabled) and whenever
the states of inputs/outputs have changed.

If external digital I/O modules are being used, whenever the user sends the Monitor Message Request,
the External Monitor Message will also be sent.

Request 3 is available to Administrator logins. There is no response. The JNIOR communications
connection is immediately terminated and a shutdown commences. You may reconnect in about 60
seconds.

STARTTLS – TLS Secured Communications

The Model 410 provides for secured communications through Transport Layer Security (TLS). To
upgrade a protocol connection to use a secured connection, issue the Request Message with Request 6.
The JNIOR will respond with a “200 TLS v1.0 enabled” response using the general textual Response
Message Type 3. The client may then begin the standard TLS v1.0 negotiation. There will be no response
to this message if it is issued to a JNIOR that does not support TLS secured communications.

 INTEG Process Group, Inc.

JNIOR Protocol Specification 17

Textual Response – Message Type 3

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 3 = Textual Data

2 N ASCII byte data One or more lines of text
terminated with a newline
character (0x0A). The overall
message includes a null (0x00)
terminator.

Date & Time Response – Message Type 6

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 6 = DateTime response message

2 8 Date and Time (long) Number of milliseconds since
January 1, 1970 00:00:00 GMT

Set Clock Message – Message Type 7

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 7 = Set Clock Message

2 8 Date and Time (long) Number of milliseconds since
January 1, 1970 00:00:00 GMT

INTEG Process Group, Inc.

18 JNIOR Protocol Specification

Usage Meter Response – Message Type 8

Usage Meters report the number of milliseconds that the corresponding input or relay output has been in
the “on” or “closed” state respectively (default). This may be inverted separately for each input or output
using the UsageState Registry key so that usage is tallied with the input in the “off” state or relay in the

“open” state.

An array of 16 usage meters is returned. The values apply to inputs and outputs according to the model
of Series 4 JNIOR.

Item # of Bytes Content Defined Values

1 1 Message Type 8 = Usage Meter Response

2 8 din1 milliseconds (long)

3 8 din2 milliseconds (long)

4 8 din3 milliseconds (long)

5 8 din4 milliseconds (long)

6 8 din5 412:rout1 milliseconds (long)

7 8 din6 412:rout2 milliseconds (long)

8 8 din7 412:rout3 milliseconds (long)

9 8 din8 412:rout4 milliseconds (long)

10 8 rout1 412:rout5 414:din9 milliseconds (long)

11 8 rout2 412:rout6 414:din10 milliseconds (long)

12 8 rout3 412:rout7 414:din11 milliseconds (long)

13 8 rout4 412:rout8 414:din12 milliseconds (long)

14 8 rout5 412:rout9 414:rout1 milliseconds (long)

15 8 rout6 412:rout10 414:rout2 milliseconds (long)

16 8 rout7 412:rout11 414:rout3 milliseconds (long)

17 8 rout8 412:rout12 414:rout4 milliseconds (long)

18 8 Date and Time (long) Number of milliseconds since
January 1, 1970 00:00:00 GMT

 INTEG Process Group, Inc.

JNIOR Protocol Specification 19

Command Message – Message Type 10

The Command Message structure varies depending on the parameter requirements.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 10 = Command message

2 1 Action (byte) 1 = close relay output
2 = open relay output
3 = toggle relay output
4 = reset input latch
5 = clear input counter
8 = clear input usage meter
9 = clear output usage meter

3 2 Channel (short) selected digital input or relay output as
appropriate.

Channel 2 Bytes Inputs Outputs

1 00 01 din1 rout1

2 00 02 din2 rout2

3 00 03 din3 rout3

4 00 04 din4 rout4

5 00 05 din5 rout5

6 00 06 din6 rout6

7 00 07 din7 rout7

8 00 08 din8 rout8

9 00 09 din9 rout9

10 00 0A din10 rout10
11 00 0B din11 rout11
12 00 0C din12 rout12

Usage is monitored for internal inputs and
relay outputs only.

The Command Message specifying a pulse requires an additional parameter. This command will pulse
the given output high for the specified duration. Note: If you wish to pulse an output low you must use
the block pulse action parameter as part of the command message.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 10 = Command message

2 1 Action (byte) 6 = pulse relay output

3 2 Channel (short) selected digital input or relay
output as appropriate.

Channel jr310

X
Where x = 1
through 16

(see previous
table)

routx

4 4 Pulse Duration (Int) Pulse length in milliseconds

INTEG Process Group, Inc.

20 JNIOR Protocol Specification

The Command Message that is used to perform block I/O (changing relay states simultaneously)
requires a combination of a mask byte to select the affected outputs and a byte defining the resulting
state for those outputs. The changes may optionally be pulsed.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 10 = Command message

2 1 Action (byte) 7 = block pulse relay states
10 = block change relay states

3 1 Channel Select Mask Byte indicating channels affected
by this command. Bits set to 1 will
be changed. LSB represents
channel 1 and MSB channel 8.

4 1 Relay State Defines the state of the relays
affected. A 1 indicates closed and
a 0 open. LSB represents channel
1 and MSB channel 8.

5 4 Pulse Duration (int)
Required for Pulse only

Pulse length in milliseconds

A maximum of 31 pulse requests may be queued at any one time. Each pulse will complete in its entirety
before the next is begun. Relays return to their original state upon completion.

The Command Message that is used with the Relay Output Expansion Modules to perform block I/O
(changing relay states simultaneously) requires two bytes to implement the mask byte that selects the
affected outputs and two bytes to define the resulting state for those outputs. This Command Message
can thus handle the 8 internal relay outputs and up to 2 external Relay Output Expansion Modules for a
total of 16 relay outputs. The changes may optionally be pulsed. The JNIOR uses the message length to
determine which of the two Command Messages for pulsing are being sent because of the different
lengths for the channel select mask and the relay state mask.

IMPORTANT: Please make sure that the length field is correct in the message header.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 10 = Command message

2 1 Action (byte) 7 = block pulse relay states
10 = block change relay states

3 2 Channel Select Mask (short) Byte indicating channels affected
by this command. Bits set to 1 will
be changed. LSB represents
channel 1 and MSB channel 16.

4 2 Relay State (short) Defines the state of the relays
affected. A 1 indicates closed and
a 0 open. LSB represents channel
1 and MSB channel 16.

5 4 Pulse Duration (int)
Required for Pulse only

Pulse length in milliseconds

A maximum of 31 pulse requests may be queued at any one time. Each pulse request on the internal
outputs will complete in its entirety before the next request is begun. The external relay outputs differ from
the internal relay outputs in that the pulse duration can be changed by sending a new command and new
pulse commands can be initiated on the other expansion relay outputs while one of the expansion relay
outputs is already executing a pulse command. Relays return to their original state upon completion.

 INTEG Process Group, Inc.

JNIOR Protocol Specification 21

ReadRegistryKeys – Message Type 11

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 11 = ReadRegistryKeys message

2 2 Count (short) The number of Registry Keys
requested

Following Block (Items 3 & 4) Repeated For Each Requested Key

3 2 Unique ID (short) A unique integer identifying the
Registry Key.

4 Variable Registry Key (String) The Registry Key identification.

ReadRegistryKeys Response – Message Type 12

This message will be received in response to either the ReadRegistryKeys or SubscribeRegistryKeys
request. When the SubscribeRegistryKeys request has been used this response message may be
subsequently returned (unsolicited) whenever a subscribed key value changes. If a requested Registry
Key does not exist, or in the case of a subscribed key and the key has been removed, this message will
include the key’s Unique ID followed by a null string (string of length zero). No matter how the Registry
Key is requested it will be returned at least once whether or not it exists in the Registry.

The returned key value is formatted as it appears in the jnior.ini file with multiple values (if present)
separated by commas with double quotation marks and escaping used as required. It is recommended
that the user’s application parse the returned string to retrieve the desired value. A key that may usually
contain only one value would appear properly if used directly in many cases but if a second element
happens to be added to the JNIOR Registry both elements may be inappropriately used unless properly
handled.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 12 = ReadRegistryKeys Response
message

2 2 Count (short) The number of Registry Key
Values to follow

Following Block (Items 3 & 4) Repeated For Each Key Value

3 2 Unique ID (short) The unique identifier for the
associated Registry Key copied
from the ReadRegistryKeys
request message.

4 Variable Registry Key Value (String) The Registry Key value as
obtained from the Registry.

INTEG Process Group, Inc.

22 JNIOR Protocol Specification

WriteRegistryKeys – Message Type 13

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 13 = WriteRegistryKeys message

2 2 Count (short) The number of Registry Keys and
Values to follow

Following Block (Items 3 & 4) Repeated For Each Key-Value Pair

3 Variable Registry Key (String) The Registry Key Identification.

4 Variable Registry Key Value (String) The Registry Key value.

WriteRegistryKeys Response – Message Type 14

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 14 = WriteRegistryKeys Response
message

2 2 Count (short) The number of Registry Keys
successfully written.

SubscribeRegistryKeys – Message Type 15

Note: With the exception of the Message Type byte this message is physically identical to the
ReadRegistryKeys request (Message Type 11). JNIOR responds with a ReadRegistryKeys Response
(Message Type 12). A subscription is entered for the connection and an additional ReadRegistryKeys
Response message will be spontaneously transmitted whenever a subscribed key changes value.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 15 = SubscribeRegistryKeys
message

2 2 Count (short) The number of Registry Keys
requested

Following Block (Items 3 & 4) Repeated For Each Requested Key

3 2 Unique ID (short) A unique integer identifying the
Registry Key.

4 Variable Registry Key (String) The Registry Key identification.

 INTEG Process Group, Inc.

JNIOR Protocol Specification 23

ListRegistry – Message Type 16

Registry keys imply a structure much like the directory structure of the file system. Each node of the tree
in the structure may contain the name of a Registry Key and the name of any sub-sections (folders). The
ListRegistry request is used to obtain a list of sub-section and key names for any given node.

The Registry node is specified without leading ‘/’ or trailing ‘/’ and specifies the complete path to the
specific Registry section from the Registry Root. The Registry Root is specified with a null or empty string
(zero length).

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 16 = ListRegistry message

2 Variable Registry Node (String) Specifies the sub-section or node
of the Registry for which the list is
requested.

ListRegistryResponse – Message Type 17

JNIOR responds to a ListRegistry request with a ListRegistryResponse in all cases even if the Registry
section or node is empty or does not exist. The response contains the list of local entries. If an entry
represents a node with further substructure, the returned name with include a trailing ‘/’. Otherwise the
entry represents a Registry Key and the value of that Key may be obtained with the ReadRegistryKey or
SubscribeRegistryKey requests.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 17 = ListRegistryResponse
message

2 2 Count (short) The number of Registry names to
follow. Zero (0) if there are no
entries

Following Item 3 Repeated For Each Name Value

3 Variable Registry Name Value (String) The Registry Name as it exists at
the specified node. Nodes with
further substructure are indicated
by a trailing ‘/’.

The Registry names are returned in no specific order.

INTEG Process Group, Inc.

24 JNIOR Protocol Specification

UnsubscribeRegistryKeys – Message Type 18

Use this command to unsubscribe from previously subscribed registry keys.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 18 = UnsubscribeRegistryKeys
message

2 2 Count (short) The number of Registry names to
follow. Zero (0) if there are no
entries

Following Item 3 Repeated For Each Name Value

3 Variable Registry Name Value (String) The Registry Name as it exists at
the specified node. Nodes with
further substructure are indicated
by a trailing ‘/’.

The Registry names are returned in no specific order.

 INTEG Process Group, Inc.

JNIOR Protocol Specification 25

ReadDevices – Message Type 21

This requests the status/content for each of the devices listed. The returned status/content is device
dependent.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 21 = ReadDevices message

2 2 Count (short) The number of Device IDs to
follow.

Item #3 Repeated for the Count indicated

3 8 Device ID (unsigned long)

ReadDevicesResponse – Message Type 22

This message will be received in response to either the ReadDevices or SubscribeDevices request.
When the SubscribeDevices request has been used this response message may be subsequently
returned (unsolicited) whenever a subscribed device status changes. What actually constitutes a device
status change is device dependent. In some cases that may be configurable.

The returned byte array contains a structure that is also device dependent. If a requested Device does
not exist this message will include the Device ID followed by an empty byte array.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 22 = ReadDevicesResponse
message

2 2 Count (short) The number of Device Reports to
follow.

Following Items 3 - 5 Repeated For Each Device Report

3 8 Device ID (unsigned long)

4 2 Length (short) Length in bytes of the following
Device Block.

5 Variable Device Block. (byte array) Contains device dependent
structure.

The Devices are reported in no specific order.

INTEG Process Group, Inc.

26 JNIOR Protocol Specification

Read Device Block Structures

The byte array returned by the ReadDevicesResponse contains a structure that is device dependent. This
varies depending on the type of device and its capabilities. The following defines those structures for the
internal devices and known external devices. Note that the size of the byte array returned may vary with
each ReadDevicesResponse and should no be assumed to be constant for any particular device.

 jr310 Digital Inputs (din1 – din8) Read Block

Item # of Bytes Content Defined Values

1 1 Present State 0 = Off, 1 = On

2 1 Alarm State 1 = alarm

3 4 Count (int)

4 1 Count Alarm 1 1 if Count >= Alarm1 setpoint

5 1 Count Alarm 2 1 if Count >= Alarm 2 setpoint

6 8 Usage Meter (long) milliseconds “on”

7 1 Usage Alarm 1 if Usage >= Alarm setpoint

17 bytes Total Length

 jr310 Relay Outputs (rout1 – rout8) Read Block

Item # of Bytes Content Defined Values

1 1 Present State 0 = Open, 1 = Closed

2 8 Usage Meter (long) milliseconds “on”

3 1 Usage Alarm 1 if Usage >= Alarm setpoint

10 bytes Total Length

 External Sensor Type 10 – Temperature Probe Read Block

Item # of Bytes Content Defined Values

1 8 Temperature (double) Current temperature in degrees
Celsius. Conversions take from
500 to 750 milliseconds.
Resolution is 0.0625 degrees
Celsius.

8 bytes Total Length

 INTEG Process Group, Inc.

JNIOR Protocol Specification 27

 External Sensor Type 12 – Dual Addressable Switch Read Block

Item # of Bytes Content Defined Values

1 1 Channel A Level (byte) 0=low, 1=high

2 1 Channel B Level (byte) 0=low, 1=high

2 bytes Total Length

 External Sensor Type 1D – 4kbit RAM with Counter Read Block

Item # of Bytes Content Defined Values

1 4 Channel A Count (unsigned int)

2 4 Channel B Count (unsigned int)

8 bytes Total Length

 Note: RAM access not available.

 External Sensor Type 20 – Quad A/D Converter Read Block

Item # of Bytes Content Defined Values

1 2 Channel A (unsigned short) Raw 16-bit A/D reading 0x0000 to
0xFFFF full scale.

2 2 Channel B (unsigned short) Raw 16-bit A/D reading 0x0000 to
0xFFFF full scale.

3 2 Channel C (unsigned short) Raw 16-bit A/D reading 0x0000 to
0xFFFF full scale.

4 2 Channel D (unsigned short) Raw 16-bit A/D reading 0x0000 to
0xFFFF full scale.

8 bytes Total Length

 External Memory Type 23 – 512 Byte EEPROM Memory

Item # of Bytes Content Defined Values

1 512 Memory content (byte array) Contains Reserved and Free
memory areas configured per the
application.

512 bytes Total Length

INTEG Process Group, Inc.

28 JNIOR Protocol Specification

 External Sensor Type 26 – Smart Battery Monitor Read Block

Item # of Bytes Content Defined Values

1 1 Status Register ** See Write Block fir detail

2 1 Temperature LSB Degrees C
Combine to Signed Integer and
divide by 256.0 for reading.

3 1 Temperature MSB

4 1 Voltage LSB Volts
Combine to Unsigned Integer and
divide by 100.0 for reading.

5 1 Voltage MSB

6 1 Current LSB Volts **
Combine to Signed Integer and
multiply by 0.002441 for reading.

7 1 Current MSB

8 1 Threshold ** read only

8 bytes Total Length

 ** Refer to Dallas/Maxim DS2438 Datasheet for details.

 External Sensor Type 28 – Temperature Probe Read Block

Item # of Bytes Content Defined Values

1 8 Temperature (double) Current temperature in degrees
Celsius. Conversions take from
500 to 750 milliseconds.
Resolution is 0.0625 degrees
Celsius.

8 bytes Total Length

 INTEG Process Group, Inc.

JNIOR Protocol Specification 29

 External Sensor Type 2C – Digital Potentiometer Read Block

Item # of Bytes Content Defined Values

1 1 Feature Register (byte) (see below)

2 1 Control Register (byte) (see below)

3 1 Wiper Position (byte)

3 bytes Total Length

Feature Register

D7 D6 D5 D4 D3 D2 D1 D0

PR NWP NP WSV PC

PC 0: logarithmic potentiometer element(s)
 1: linear potentiometer element(s)

WSV 0: wiper position(s) non-volatile
 1: wiper position(s) volatile

NP 00: device contains 1 potentiometer
 01: device contains 2 potentiometers
 10: device contains 3 potentiometers
 11: device contains 4 potentiometers

NWP 00: 5-bit (32 positions)
 01: 6-bit (64 positions)
 10: 7-bit (128 positions)
 11: 8-bit (256 positions)

PR 00: 5K Ohm resistance
 01: 10K Ohm resistance
 10: 50K Ohm resistance
 11: 100K Ohm resistance

Control Register

D7 D6 D5 D4 D3 D2 D1 D0

X CPC X X IWN WN

WN 00: select potentiometer 1
 01: select potentiometer 2
 10: select potentiometer 3
 11: select potentiometer 4

IWN 1’s complement of WN

CPC 0: charge pump OFF
 1: charge pump ON

X don’t care

INTEG Process Group, Inc.

30 JNIOR Protocol Specification

 External Device Type F9 – 3-Channel LED Dimmer

Item # of Bytes Content Defined Values

1 2 Output Channel 1 (unsigned short)
RED

Raw 16-bit setting 0x0000 to
0xFFFF full scale.

2 2 Output Channel 2 (unsigned short)
GREEN

Raw 16-bit setting 0x0000 to
0xFFFF full scale.

3 2 Output Channel 3 (unsigned short)
BLUE

Raw 16-bit setting 0x0000 to
0xFFFF full scale.

4 2 Output Channel 4 (unsigned short)
WHITE

unused

5 2 Channel 1 Slew Rate
(unsigned short)

Milliseconds (3000 default)

6 2 Channel 2 Slew Rate
(unsigned short)

Milliseconds (3000 default)

7 2 Channel 3 Slew Rate
(unsigned short)

Milliseconds (3000 default)

8 2 Channel 4 Slew Rate
(unsigned short)

unused

16 bytes Total Length

 External Device Type FA – Rack Mounted User Panel (A1) Read Block

Item # of Bytes Content Defined Values

1 2 Switch Function Status Bits D0 thru D11 correspond to
Switch Functions F1 thru F12.
(0 = Clear, 1 = Pressed/Activated)

2 2 LED State Bits D0 thru D11 correspond to
LEDs L1 thru L12.
(0 = Off, 1 = On/Flashing)

4 bytes Total Length

 INTEG Process Group, Inc.

JNIOR Protocol Specification 31

 External Sensor Type FB – 4ROUT Digital Module Read Block

Item # of Bytes Content Defined Values

1 1 Last Used Channel Select Mask Bits D0 thru D3 correspond to
Relay Outputs A thru D.
(0 = No Change, 1 = Change)

2 1 Relay State Bits D0 thru D3 correspond to
Relay Outputs A thru D.
(0 = Open, 1 = Closed)

3 2 Relay A Pulse Time Remaining.
(unsigned short)

1 to 65535 milliseconds.
(0 = static)

4 2 Relay B Pulse Time Remaining.
(unsigned short)

1 to 65535 milliseconds.
(0 = static)

5 2 Relay C Pulse Time Remaining.
(unsigned short)

1 to 65535 milliseconds.
(0 = static)

6 2 Relay D Pulse Time Remaining.
(unsigned short)

1 to 65535 milliseconds.
(0 = static)

10 bytes Total Length

 External Sensor Type FC – RTD Temperature Module Read Block

Item # of Bytes Content Defined Values

1 2 Input Channel 1 (signed short) Signed integer temperature in
degrees Celsius X10.

2 2 Input Channel 2 (signed short) Signed integer temperature in
degrees Celsius X10.

3 2 Input Channel 3 (signed short) Signed integer temperature in
degrees Celsius X10.

4 2 Input Channel 4 (signed short) Signed integer temperature in
degrees Celsius X10.

8 bytes Total Length

Note: Each channel requires the connection of a 2-wire or 3-wire PT100 RTD device. The value
of 32767 (0x7FFF) is returned for unwired channels.

INTEG Process Group, Inc.

32 JNIOR Protocol Specification

 External Sensor Type FD – 10V Analog Module Read Block

Item # of Bytes Content Defined Values

1 2 Input Channel 1 (short) Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

2 2 Input Channel 2 (short) Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

3 2 Input Channel 3 (short) Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

4 2 Input Channel 4 (short) Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

5 2 Output Channel 1 (unsigned short) Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

6 2 Output Channel 2 (unsigned short) Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

12 bytes Total Length

Note: Inputs are +/- 10 volts. 0x0000 represents a -10V input and 0xFFF0 a +10V input. 0x8000
therefore represents the 0V input level. Outputs are 0 to 10 volts only. A setting of 0x0000 results
in a 0V output and 0xFFF0 in +10V out. Only the most significant 12 bits are used for the output
channels.

 External Sensor Type FE – 4-20ma Analog Module

Item # of Bytes Content Defined Values

1 2 Input Channel 1 (unsigned short) Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

2 2 Input Channel 2 (unsigned short) Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

3 2 Input Channel 3 (unsigned short) Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

4 2 Input Channel 4 (unsigned short) Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

5 2 Output Channel 1 (unsigned short) Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

6 2 Output Channel 2 (unsigned short) Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

12 bytes Total Length

Note: 0x0000 represents a 4 milliamp loop current and 0xFFF0 (thru 0xFFFF) represents 20
milliamps. Scaling is linear. Only the most significant 12 bits are used for the output channels.

 INTEG Process Group, Inc.

JNIOR Protocol Specification 33

WriteDevices – Message Type 23

This is used to change one or more device’s status, configuration, or content. The requested change is
conveyed as a byte array whose structure is device dependent.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 23 = WriteDevices message

2 2 Count (short) The number of Devices to be
written.

Following Items 3 - 5 Repeated For Each Device

3 8 Device ID (unsigned long)

4 2 Length (short) Length in bytes of the following
Device structure.

5 Variable Device Block (byte array) Contains device dependent
structure.

WriteDevices Response – Message Type 24

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 14 = WriteDevices Response
message

2 2 Count (short) The number of Devices
successfully written.

INTEG Process Group, Inc.

34 JNIOR Protocol Specification

Write Device Block Structures

The byte array supplied with the WriteDevices message must contain the defined structure that is device
dependent. This varies depending on the type of device and its capabilities. The following defines those
structures for the internal devices and known external devices. Note that the Flags field is used to indicate
which the items in the structure to be modified by the write request. The bit positions in Flags indicate the
action and may contain any combination of bits allowing for any portion of the structure to be affected.
The entire structure must be provided and those fields not being written are ignored.

 jr310 Digital Inputs (din1 – din8) Write Block

Item # of Bytes Content Defined Values

1 1 Flags (byte) 0x01 – Reset Count
0x02 – Write Count
0x04 – Reset Usage Meter

2 4 Count (int) Required if Write Count flag set.

1 or 5 bytes Total Length

 jr310 Relay Outputs (rout1 – rout8) Write Block

Item # of Bytes Content Defined Values

1 1 Flags (byte) 0x01 – Modify State
0x02 – Reset Usage Meter

2 1 Present State 0 = Open, 1 = Closed
Required if Modify State flag set.

1 or 2 bytes Total Length

 External Sensor Type 12 – Dual Addressable Switch Write Block

Item # of Bytes Content Defined Values

1 1 Channel A Level (byte) 0=low, 1=high

2 1 Channel B Level (byte) 0=low, 1=high

2 bytes Total Length

 INTEG Process Group, Inc.

JNIOR Protocol Specification 35

 External Memory Type 23 – 512 Byte EEPROM Memory

Item # of Bytes Content Defined Values

1 2 Starting Address (short) 0 – 511

2 2 Count (short) Count of bytes to be written. The
sum of the Starting Address and
the Count must not exceed 511.

3

Variable Content to be written (byte array) Array of Bytes to be written. Must
be exactly the number of bytes
defined by Count.

 External Sensor Type 26 – Smart Battery Monitor Write Block

Item # of Bytes Content Defined Values

1 1 Configuration Register ** See below

1 bytes Total Length

 ** Refer to Dallas/Maxim DS2438 Datasheet for details.

Configuration Register

D7 D6 D5 D4 D3 D2 D1 D0

X ADB NVB TB AD EE CA IAD

IAD 0: current A/D disabled
 1: current A/D enabled

CA 0: CCA/DCA disabled (inaccessible)
 1: CCA/DCA disabled

EE 0: CCA/DCA not shadowed
 1: CCA/DCA shadowed

AD 0: Voltage reports general purpose input
 1: Voltage reports supply voltage

TB 0: Temperature conversion complete
 1: Temperature conversion in-process

NVB 0: Non-volatile memory not busy
 1: Non-volatile memory busy

ADB 0: A/D conversion complete
 1: A/D conversion in-process

X Don’t care

INTEG Process Group, Inc.

36 JNIOR Protocol Specification

 External Sensor Type 2C – Digital Potentiometer Write Block

Item # of Bytes Content Defined Values

1 1 Control Register (byte) (see below)

2 1 Wiper Position (byte)

2 bytes Total Length

Control Register

D7 D6 D5 D4 D3 D2 D1 D0

X CPC X X IWN WN

WN 00: select potentiometer 1
 01: select potentiometer 2
 10: select potentiometer 3
 11: select potentiometer 4

IWN 1’s complement of WN

CPC 0: charge pump OFF
 1: charge pump ON

X don’t care

 INTEG Process Group, Inc.

JNIOR Protocol Specification 37

External Device Type F9 – 3-Channel LED Dimmer

Item # of Bytes Content Defined Values

1 2 Channel 1 Setting (plus 1)
RED (unsigned short)

16-bit value. 0x0000 leaves
channel unchanged. 0x0001 is
OFF. 0xFFFF sets maximum
brightness.

2 2 Channel 2 Setting (plus 1)
GREEN (unsigned short)

16-bit value. 0x0000 leaves
channel unchanged. 0x0001 is
OFF. 0xFFFF sets maximum
brightness.

3 2 Channel 3 Setting (plus 1)
BLUE (unsigned short)

16-bit value. 0x0000 leaves
channel unchanged. 0x0001 is
OFF. 0xFFFF sets maximum
brightness.

4 2 Channel 4 Setting (plus 1)
WHITE (unsigned short)

unused

5 2 Channel 1 Slew Rate (plus 1)
(unsigned short)

Milliseconds. 16-bit value. 0x0000
leaves setting unchanged. 0x0001
is immediate – slew disabled.

6 2 Channel 2 Slew Rate (plus 1)
(unsigned short)

Milliseconds. 16-bit value. 0x0000
leaves setting unchanged. 0x0001
is immediate – slew disabled.

7 2 Channel 3 Slew Rate (plus 1)
(unsigned short)

Milliseconds. 16-bit value. 0x0000
leaves setting unchanged. 0x0001
is immediate – slew disabled.

8 2 Channel 4 Slew Rate (plus 1)
(unsigned short)

unused

9 128 64 Curve Points (unsigned short) 16-bit values 0x0000 to 0xFFFF.
OPTIONAL AS NEEDED

144 bytes maximum Total Length

The LED Dimmer Write Block allows you to independently set brightness and slew rates for specific
channels without affecting the other channels. A non-zero value will change the associated setting others
will be left unchanged.

Add 1 to the Channel and Slew values that you intend to set. A value of 0x0000 leaves the setting
unchanged. To turn a channel OFF set the field to 0x0001. This will read back as 0x0000. To set a
channel to maximum brightness set the field to 0xFFFF. This will read back as 0xFFFF as the dimmer will
see 0xFFFE and 0xFFFF as being equivalent.

Similarly you must add 1 to the Slew rate as a field value of 0x0000 will leave the setting unchanged. To
set a Slew Rate of precisely 5 seconds enter the value 5001 (0x1389) in the field. The value will read
back as 5000. To disable slewing and have brightness values take effect immediately enter the value
0x0001 in the appropriate Slew Rate field.

Since we are more sensitive to changes in low brightness levels than we are to changes in high-intensity
light the LED Dimmer employs a curve. This is intended to provide seemingly linear and smooth
transitions. The appropriate curve can be dependent upon the actual LED lighting used and can also be a
matter of personal preference. A default curve is supplied but it may be optionally reprogrammed. The
curve array is typically omitted from the Write Block. Only the channel brightness and slew rate fields
need be supplied.

INTEG Process Group, Inc.

38 JNIOR Protocol Specification

If the curve is to be reprogrammed a full 144 byte block must be written and all 64 points of the curve
supplied. The first point represents the brightness level for a setting of 0x0000. A 65

th
 point is required for

interpolation and it is assumed to be 0xFFFF. The 64 points are equally spaced in the range 0x0000 to
0xFFFF. A linear curve would have values 0x0000, 0x0400, 0x0800, … 0xFF00 as the 64 points
correspond to the upper 6 bits of the channel setting. When brightness is calculated a point is selected
using the upper 6-bits of the channel setting and the value is determined by interpolation using the
remaining 10 bits and the next point in the table. This is where the 65

th
 point (maximum) is used.

NOTE

When reprogrammed the curve is permanently saved. You need only transmit a new curve to a dimmer
once. The curve applies to all channels in the device. Once all 64 points have been successfully received
the entire curve is committed to flash memory. This can take several seconds during which time the
dimmer will not respond. The curve MUST be sent only when reprogramming is intended. To restore the
LED dimmer curve to factory default, program all 64 points to 0xFFFF.

 INTEG Process Group, Inc.

JNIOR Protocol Specification 39

 External Device Type FA – Rack Mounted User Panel (A1) Write Block

Item # of Bytes Content Defined Values

1 2 LED Select Mask Bits D0 thru D11 correspond to
LEDs L1 thru L12.
(0 = No Change, 1 = Change)

2 2 LED States Bits D0 thru D11 correspond to
LEDs L1 thru L12. Only those
selected in the LED Select Mask
are affected. (0 = Off, 1 = On)

3 1 Flash Rate Applied to the selected LEDs in
the ON state.
 0 = static on/no flash
 1 = slow
 2 = medium
 3 = fast

4 1 Flash Count 1-255. Applied to the selected
LEDs in the ON state. LED goes to
OFF state upon completion.
(0 = continuous)

5 2 Switch Acknowledge Bits D0 thru D11 correspond to
Switch functions F1 thru F12.
Acknowledges the current switch
activation.
(0 = no change, 1 = acknowledge)

6 2 Switch Reset Bits D0 thru D11 correspond to
Switch functions F1 thru F12.
Resets function status and clears
all pending activations.
(0 = no change, 1 = reset)

7 1 Command Enumeration,
 0 = no command
 1 = global reset
 2 = set panel brightness

1

 3 = play sound
1 2

 4 = set audio volume

1 2

 5 = sound alarm
4

 6 = silence alarm

8 1 Command Parameter Brightness (Command 2)
 0-255 dim thru full brightness
 setting is non-volatile

3

Play Sound (command 3)
 0-255 Sound ID
Volume (Command 4)
 0-255 min thru max
 setting is non-volatile

3

Sound Alarm (Command 5)
 1-255 volume level for alarm
 0 use default volume

9 8 Parameter Block See below.

20 bytes Total Length
1
 Requires Parameter.

2
 Enhanced panels with audio feature only.

3
 Default is 255.

4
 Requires Parameter Block as defined below. Overrides any ongoing alarm.

INTEG Process Group, Inc.

40 JNIOR Protocol Specification

 Parameter Block – Alarm Descriptors for Sound Alarm Command 5

Item # of Bytes Content Defined Values

9-1 1 Tone Frequency 1-96 selecting the frequency of the
associated piano key (1-88)
including an extension to the
keyboard (89-96)

1

9-2 1 Tone Count 0-255 Optional count of tones to
issue

2

9-3 2 Tone Length Tone duration in milliseconds

9-4 2 Period Time from the beginning of one
tone to the beginning of the next in
milliseconds

3

9-5 2 Alarm Duration Total overall duration of the alarm
in seconds

2

8 bytes Parameter Block Length

1
 Frequency range from 275 Hz to 6.27 KHz. Selections below 30 are not audible with small

speaker. Volume increases with frequency and selections from 80 to 96 are recommended for
alarms. Select 40 for Middle C. Twelve (12) steps per octave.

2
 The duration of an alarm may be defined either by the count of tones or the duration in seconds

or both. If both the count and duration are defined the alarm continues until both are satisfied.
With both count and duration of 0 a single beep is issued.

3
 If the Period does not exceed the specified Tone Length only a single tone will be issued.

 INTEG Process Group, Inc.

JNIOR Protocol Specification 41

 External Sensor Type FB – 4ROUT Digital Module Write Block

Item # of Bytes Content Defined Values

1 1 Channel Select Mask Bits D0 thru D3 correspond to
Relay Outputs A thru D.
(0 = No Change, 1 = Change)

2 1 Relay States Bits D0 thru D3 correspond to
Relay Outputs A thru D. Only
those relays selected in the
Channel Select Mask are affected.
(0 = Open, 1 = Closed)

3 2 Relay A Pulse Duration.
(unsigned short)

1-65535 milliseconds. Enabled
only if relay selected by the
Channel Select mask.
(0 = static/no pulse)

4 2 Relay B Pulse Duration.
(unsigned short)

1-65535 milliseconds. Enabled
only if relay selected by the
Channel Select mask.
(0 = static/no pulse)

 5 2 Relay C Pulse Duration.
(unsigned short)

1-65535 milliseconds. Enabled
only if relay selected by the
Channel Select mask.
(0 = static/no pulse)

6 2 Relay D Pulse Duration.
(unsigned short)

1-65535 milliseconds. Enabled
only if relay selected by the
Channel Select mask.
(0 = static/no pulse)

10 bytes Total Length

Note: Add 1-2 milliseconds to offset the mechanical response time of relays. Relays return to
their prior state upon completion of a pulse except if a pulse is interrupted. In that case the new
duration is started and the relay will return to its state prior to the original interrupted pulse.

INTEG Process Group, Inc.

42 JNIOR Protocol Specification

External Sensor Type FD – 10V Analog Module Write Block

Item # of Bytes Content Defined Values

1 2 Channel 1 Setting (unsigned short) Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

2 2 Channel 2 Setting (unsigned short) Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

4 bytes Total Length

Note: 0x0000 results in a 0 volt output and 0xFFF0 in 10 volts out. Only the most significant 12
bits are used. Scaling is linear.

10V analog modules built after March 2014 have firmware version v1.11 or later. This firmware provides
the option to specify a slew rate for each channel. This defines the time in milliseconds for the channel to
ramp from the current setting to the new setting. The D-to-A outputs are adjusted each millisecond to
linearly change from the level at the time the command is received to the specified output level. To
specify the slew rates, the additional parameters are passed using the following block format.

Item # of Bytes Content Defined Values

1 2 Channel 1 Setting (unsigned short) Raw 16-bit D/A setting 0x0000 to
0xFFF0 full scale.

2 2 Channel 2 Setting (unsigned short) Raw 16-bit D/A setting 0x0000 to
0xFFF0 full scale.

3 2 Channel 1 Slew (unsigned short) 0 to 65535 milliseconds

4 2 Channel 2 Slew (unsigned short) 0 to 65535 milliseconds

8 bytes Total Length

A slew rate value of 0 milliseconds signifies an immediate change and is equivalent to not specifying the
slew rate at all. If you are specifying a slew rate for channel 1 you may omit the channel 2 field from the
block entirely. Note that both channels are set by this block and this occurs simultaneously. Care must be
taken if you are slewing independent signals on both channels.

 INTEG Process Group, Inc.

JNIOR Protocol Specification 43

10V Voltage Transfer Function

The user may also specify a custom voltage transfer function which is applied to both channels. By
default a 1-to-1 transfer function is used where the output voltage is as specified by the channel setting.
In some cases where non-linear operation is desired a module may be programmed with a custom
transfer function.

Vout = Fn(Vset)

The table consists of 65 points defining Vout for each Vset from 0x0000 through 0xFC00 in steps of
0x0400 plus a point for maximum Vset (required for contiguous interpolation). The voltage transfer
function is non-volatile. The table is programmed using the following write block.

Item # of Bytes Content Defined Values

1 2 Channel 1 Setting (unsigned short) ignored

2 2 Channel 2 Setting (unsigned short) ignored

3 2 Channel 1 Slew (unsigned short) ignored

4 2 Channel 2 Slew (unsigned short) ignored

5 2 Voltage Output (unsigned short) Raw 16-bit D/A value for 0x0000

6 2 Voltage Output (unsigned short) Raw 16-bit D/A value for 0x0400

… 2 Voltage Output (unsigned short) Raw 16-bit D/A values for 0x0800
thru 0xF000

67 2 Voltage Output (unsigned short) Raw 16-bit D/A value for 0xF800

68 2 Voltage Output (unsigned short) Raw 16-bit D/A value for 0xFC00

69 2 Voltage Output (unsigned short) Raw 16-bit D/A value for 0xFFFF
(essentially for 0x10000)

138 bytes Total Length

The table will be programmed and will take effect with the next output setting once the entire write block
has been successfully transferred. The process will take a few seconds during which time the module will
not be accessible. It is recommended that software either wait an estimated time (5 seconds) for
programming to complete or otherwise retry communications until the module is returned to service. Note
that the table may be removed by writing 0xFFFF for each of the 65 points.

 External Sensor Type FE – 4-20ma Analog Module Write Block

Item # of Bytes Content Defined Values

1 2 Channel 1 Setting (unsigned short) Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

2 2 Channel 2 Setting (unsigned short) Raw 16-bit A/D reading 0x0000 to
0xFFF0 full scale.

4 bytes Total Length

Note: 0x0000 results in a 4 milliamp loop current and 0xFFF0 in 20 milliamps. Only the most
significant 12 bits are used. Scaling is linear.

INTEG Process Group, Inc.

44 JNIOR Protocol Specification

SubscribeDevices – Message Type 25

Note: With the exception of the Message Type byte this message is physically identical to the
ReadDevices request (Message Type 21). JNIOR responds with a ReadDevices Response (Message
Type 22). A subscription is entered for the connection and an additional ReadDevices Response
message will be spontaneously transmitted whenever a subscribed device’s status changes. What
constitutes a status change is device dependent and in some cases may be configurable. A device
subscription remains in place until the connection is closed.

Note that a subscription typically returns the Read Device Block for a device when any content changes.
The one exception being the A/D devices wherein noise levels guarantee that every sampling results in
some change. The Type 20 Quad A/D Converter reports changes only when the delta exceeds a value
roughly equivalent to 8 bits of resolution.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 25 = SubscribeDevices message

2 2 Count (short) The number of Device IDs to
follow.

Item #3 Repeated for the Count indicated

3 8 Device ID (unsigned long)

 INTEG Process Group, Inc.

JNIOR Protocol Specification 45

EnumerateDevices – Message Type 26

Each JNIOR will contain internal I/O devices and possibly external I/O devices if the Sensor Port is
available and additional devices are connected there. This request is used to obtain a list of active
devices.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 26 = EnumerateDevices message

2 1 Flags (byte) 0x01 – enumerate internal
0x02 – enumerate external
0x03 – enumerate all

EnumerateDevicesResponse – Message Type 27

JNIOR responds to an EnumerateDevices request with a EnumerateDevicesResponse. The response
contains the list of the Device IDs available either internally, externally or both depending on the setting of
the associated Flags bits. Note that JNIOR is prompted to scan its I/O device structures and physical
networks and several seconds may pass before the response is returned.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 27 = EnumerateDevicesResponse
message

2 1 Flags (byte) Flags provided in request.

3 2 Count (short) The number of Devices found.

Following Item 4 Repeated For Each Device

4 8 Device ID (unsigned long)

The Device IDs are returned in no specific order.

UnsubscribeDevices – Message Type 28

This will unsubscribe the given devices from the current connection.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 28 = UnsubscribeDevices
message

2 2 Count (short) The number of Device IDs to
follow.

Item #3 Repeated for the Count indicated

3 8 Device ID (unsigned long)

INTEG Process Group, Inc.

46 JNIOR Protocol Specification

GetExternalValue – Message Type 29

Each connected external device can be enumerated by the JNIOR OS and assigned channel numbers.
This command allows a user to request a value by channel number for a device type.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 29 = GetExternalValue message

2 1 Device Type (byte) 0x10 – Temperature Sensor
0x28 – Temperature Sensor
0xFB – 4 Relay Out Module
0xFC – RTD Module
0xFD – 10 Volt Module
0xFE – 4 – 20 ma Module

3 1 Input / Output (byte) 01 – Input Channel
02 – Output Channel

4 1 Channel Number (byte) This can be device dependent.
For example an RTD module has
no outputs and temperature
Sensors have 1 input.

GetExternalValueResponse – Message Type 30

JNIOR responds with the scaled value of the desired IO. The scaling information can be set in the
registry or by the JNIOR Web Page. Outputs are returned on a scale of 0 – 100%.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 30 = GetExternalValueResponse
message

2 1 Device Type (byte) The device type passed in

3 1 Input / Output (byte) The IO selection passed in

4 1 Channel Number (byte) The channel number passed in

5 8 Value (double) The value of the selected channel
on the desired device.

 INTEG Process Group, Inc.

JNIOR Protocol Specification 47

SetExternalValue – Message Type 31

Each connected external device can be enumerated by the JNIOR OS and assigned channel numbers.
This command allows a user to set a value by channel number for a device type. Outputs are entered on
a scale of 0% - 100%.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 31 = SetExternalValue message

2 1 Device Type (byte) 0xFB – 4 Relay Out Module
0xFD – 10 Volt Module
0xFE – 4 – 20 ma Module

3 1 Channel Number (byte) This can be device dependent.
For example an RTD module has
no outputs and temperature
Sensors have 1 input.

4 8 Value (double) The value to assign to the given
devices channel

SetExternalValueResponse – Message Type 32

JNIOR responds with the scaled value of the desired IO. The scaling information can be set in the
registry or by the JNIOR Web Page. The returned value mimics the set value.

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 32 = SetExternalValueResponse
message

2 1 Device Type (byte) The device type passed in

3 1 Channel Number (byte) The channel number passed in

4 8 Value (double) The value of the selected channel
on the desired device.

INTEG Process Group, Inc.

48 JNIOR Protocol Specification

NonceRequest – Message Type 128

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 128 = NonceRequest message

Login may be accomplished without the need to pass a password in clear text across the network. The
encoded password option is not sufficiently secure in that it is a very simple matter to retrieve the
password from the encoding. As an alternative the password may be encrypted as a message digest
using MD5 and provided in the encoded password transfer. To do so you need to obtain a unique string
from the JNIOR called the “nonce” string. This nonce string will be valid for several minutes and is used in
combination with the user’s credentials to calculate the encoded password for transfer.

NonceResponse – Message Type 127

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 127 = NonceResponse message

2 Variable Nonce (String)

This response supplies a temporary “nonce” string that is to be used to encrypt the user’s password use
the MD5 hash function. To encode the password the ‘username’, ‘nonce’ and ‘password are
concatenated into single string with colon ‘:’ as a separator and the MD5 hash is calculated. The double
quotes shown below are not included in the calculation. There is no white space added on either side of
the separator.

hash = MD5 (“username” : “nonce” : “password”)

The calculated hash is a 16-byte binary value. This must be converted to a 32-character hexadecimal
case-insensitive string representation. This hexadecimal string is then combined with the username as
follows. Again the quotes and white space are not included.

encoded password = “username” : “hash string”

The result can then be supplied as the encoded password in the Login Request detailed below.

LoginRequest – Message Type 126

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 126 = LoginRequest message

2 Variable Username (String) A valid username

3 Variable Password (String) The valid password for this user.

By default a successful login will be required to enable protocol operation. This requirement may be
removed by setting JniorServer/Login to ‘disabled’ in the JNIOR Registry. In this case the protocol
proceeds as if an administrator has logged in. Note that if login has been disabled a LoginRequest may
still be used to effect a login if appropriate.

 INTEG Process Group, Inc.

JNIOR Protocol Specification 49

 Anonymous Login

If the JniorServer/Anonymous key has been defined in the Registry an anonymous login will be allowed.
An anonymous login request contains both blank (zero length) Username and blank Password strings.
The anonymous login must be successfully performed to enable protocol operation. The Registry key
defines the integer (0-254) User ID to be used for anonymous access. A value of 0 (zero) is
recommended. User IDs of 128 or greater are equivalent to an administrator login. To disable anonymous
usage the JniorServer/Anonymous key must not appear in the Registry (valid content or not).

 Encoded Password Transfer

The UserName and Password in the above transactions are transferred in clear text. This means that
someone able to monitor network traffic may view message content and will be able to see your login
information. This may be of concern when communicating with JNIOR over public networks.

Optionally one may encode the combined username:password string (for instance “jdoe:mypass”) using
Base64 encoding as defined by IEC RFC 1521. This renders the login information in a format that is not
easily read by humans. The base64 encoded login string is transferred as the Password and its use is
signified by supplying a blank (zero length) Username string. Note that this a minimal step and by no
means represents true security. It will however minimize the temptation associated with accidentally
discovering a user’s password.

A more secure transfer is possible if a “nonce” value is obtained and the username and password are
encoded using the MD5 hash as previously discussed (message types 128 and 127). The encoded hash
(actually username:hash) is supplied as the Password. Its use is signified by a blank Username string and
is differentiated from the Base64 encoding by the presence of the separating ‘:’ colon.

Login Acknowledgement – Message Type 125

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 125 = Login Acknowledgement
response message

2 1 User Permissions (byte) The permissions assigned to the
user or -1 if login failed.
 Bit7 - is Administrator
 Bit1 - can Control:

The following custom commands allow an application on the Ethernet that is talking to the JNIOR via the
JNIOR protocol to talk directly to an external application running on the JNIOR.

INTEG Process Group, Inc.

50 JNIOR Protocol Specification

Custom Command Response – Message Type 254

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 254 = Custom Command response
message

2 1 Return Status (byte) -1 = error. Other status codes will
be external application defined.

3 2 Payload size (short) This is the length of the payload
that follows.

4 Variable Payload (byte[]) This is an array of bytes that is the
payload.

Custom Command – Message Type 255

Item # of Bytes Content Defined Values

1 1 Message Type (byte) 255 = Custom Command message

2 Variable Command name (string) This is the command that the
external application running on the
JNIOR would have registered with
the OS.

3 1 Command Type (byte) This is a byte that will be passed to
the external application describing
the payload to follow.

4 2 Payload size (short) This is the length of the payload
that follows.

5 Variable Payload (byte[]) This is an array of bytes that is the
payload.

 INTEG Process Group, Inc.

JNIOR Protocol Specification 51

CRC-16 Algorithm

A standard implementation of the CRC-16 (16-bit Cyclic Redundancy Check) is used. If a library function
is not available for use the following algorithm will provide the calculation. This is a table look-up
implementation and the table can either be used as supplied or generated on the fly at the programmer’s
option.

A Java implementation follows. This is readily adapted for use with C/C++, etc.

 /* Static CRC16 lookup table. This table can be used as supplied or

 * generated on the fly.

 */

 // Omit if dynamically generated table used

 private int[] crctab = /* CRC lookup table */

 {

 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,

 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,

 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,

 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,

 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,

 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,

 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,

 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,

 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,

 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,

 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,

 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,

 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,

 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,

 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,

 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,

 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,

 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,

 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,

 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,

 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,

 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,

 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,

 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,

 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,

 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,

 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,

 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,

 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,

 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,

 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,

 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040

 };

 // Omit if static table used

 private int[] crc_table = null; // dynamically generated table

INTEG Process Group, Inc.

52 JNIOR Protocol Specification

 /** Generates the CRC16 for the supplied byte array. Note that this

 * will generate the lookup table on the fly the first time it is

 * used. You may optionally use the static table. The initial CRC

 * value should be 0.

 *

 * Note: ‘>>>’ is an unsigned right shift.

 */

 public int crc16(byte[] data, int crc) {

 /* Omit this conditional block if the static version of the

 * look-up table is to be used.

 */

 if (crc_table == null) { /* generate table */

 crc_table = new int[256];

 int n, i, c, d;

 for (n = 0; n < 256; n++) {

 c = 0;

 d = n;

 for (i = 0; i < 8; i++) {

 if (((c ^ d) & 1) != 0) c = (c >>> 1) ^ 0xA001;

 else c = c >>> 1;

 d = d >>> 1;

 }

 crc_table[n] = c;

 }

 } /* generate table */

 // Calculate the CRC16 of the data byte array.

 int i;

 for (i=0; i<data.length; i++)

 crc = ((crc >>> 8) & 0xff) ^ crc_table[(crc ^ data[i]) & 0xff];

 return crc;

 }

Example Transactions

Here is an example login transaction for programming reference. This shows two complete messages
byte-by-byte. The first is a Login Request and the second the Login Acknowledgement from JNIOR.

Msg Received by JNIOR:

 01 00 0d 60 b7 7e 05 6a 6e 69 6f 72 05 6a 6e 69 6f 72

Msg Sent by JNIOR:

 01 00 02 f0 20 7d 80

In the above the first 5 bytes of each transmission is the Message Header these are shown using bold
characters. Each header starts with 0x01. This is always the case and all other byte values should be
ignored. JNIOR may send the ACK 0x06 byte periodically in an attempt to demonstrate activity and to
keep a connection alive. These should be ignored with the exception of the fact that they indicate that the
JNIOR is still connected.

Following the Start of Header 0x01 byte the next two bytes form the short integer message length as
transmitted used big-endian byte order. This would be 13 (0x000d) and 2 (0x0002) bytes respectively.
This denotes the exact length of the message payload that follows the header. The message length may
be zero (0x0000). Such a message could also be used as a keep-alive indication. The message should
otherwise be ignored.

The last two bytes of the header represent the CRC16 and are 0x60b7 and 0xf020 respectively in this
example. With one exception, messages in which the calculated CRC16 from the message payload does
not match that reported in the header will be ignored by JNIOR and should be ignored by the user’s
application. The CRC16 calculation routine has been provided in a prior section.

 INTEG Process Group, Inc.

JNIOR Protocol Specification 53

The programmer may be anxious to demonstrate function prior to CRC implementation. This is
understandable. It is for this purpose that the JNIOR will ignore the CRC16 check should the supplied
value be exactly 0xFFFF. Although it will likely never happen, the programmer should return the favor
and not perform the check upon reception of a message from the JNIOR with a 0xFFFF CRC value. So,
for example, the following form of the above transaction is equally functional. Note where the 0xFFFF
CRC has been used.

Msg Received by JNIOR:

 01 00 0d ff ff 7e 05 6a 6e 69 6f 72 05 6a 6e 69 6f 72

Msg Sent by JNIOR:

 01 00 02 f0 20 7d 80

In the above the messages the payload is shown in bold characters. The first payload is 13 bytes and the
second just two bytes. Both are the proper length as defined by the length field in the header.

Each message serves a purpose and the very first byte defines the message type. The first message is
Type 126 (0x7e) representing the LoginRequest and the second Type 125 being the associated
LoginAcknowledgement. The login request message contains two strings of 5 character length. Note the
string length appears first and the following characters represent ‘jnior’ the default username and also the
default password (both being the same as shipped from the factory).

The acknowledgement returns the User ID which is 128 (0x80) in this case. The JNIOR would return 255
(0xFF) if the login failed. Note that User IDs in the range 128 (0x80) to 254 (0xFE) represent
Administrative users and have rights to modify configuration and perform other functions.

The following transaction demonstrates a Registry key Subscription.

Msg Received by JNIOR:

 01 00 2c 2c 04 0f 00 03 00 00 0b 44 65 76 69 63 65

 2f 44 65 73 63 00 01 08 24 56 65 72 73 69 6f 6e 00

 02 0d 24 53 65 72 69 61 6c 4e 75 6d 62 65 72

Msg Sent by JNIOR:

 01 00 31 98 9a 0c 00 03 00 00 16 6a 72 33 31 30 20

 44 65 76 65 6c 6f 70 6d 65 6e 74 20 55 6e 69 74 00

 01 08 32 2e 30 31 2e 33 34 36 00 02 07 34 39 30 34

 30 30 34

This particular exchange requests the current value and notice of all future changes to the following three
keys:

Device/Desc

$Version

$SerialNumber

And the appropriate values are returned in the response:

“jr 310 Development Unit”

“2.01.346”

“4904004”

Of these three Registry Keys only the first happens to be subject to change. If it were changed now
through the Registry Editor an additional message would be sent by JNIOR containing the new value.
This would be referenced against the key’s Unique ID of 0 (0x0000). This subscription would be valid until

INTEG Process Group, Inc.

54 JNIOR Protocol Specification

the connection is closed. The detailed parsing of these two example transmissions will be left to the
programmer.

CRC Test Strings

The following strings may be used to test the CRC16 algorithm. For each string the value should be
returned as shown.

Text String CRC16 Value

“0123456789” 0x443d

“ABCDEFG” 0x9e6c

“” (empty string – 0 bytes) 0x0000

Proper CRC16 values for more complex arrangements can be found in the example transmissions of the
prior section.

