
0 As of version 3.1

INTEG PROCESS GROUP, INC.

JNIOR DLL
JNIOR DLL and .NET Wrapper Developers Guide

Updated: 12/22/2009

This document is intended to familiarize a developer with the JNIOR DLL and its architecture. This
document has sample snippets written in C++ and C#.

Contents
JNIOR DLL .. 1

Using JniorDll.dll .. 1

How to include the SDK files in Visual Studio ... 2

Using JniorDll.Net.dll ... 3

Synchronous vs. Asynchronous ... 4

Callbacks .. 4

Logging .. 5

Heartbeat .. 5

Features .. 6

General .. 6

Getting the DLL Version ... 6

Getting a Description of a Status Code .. 6

Local Server for Incoming Connections .. 7

Creating a Session .. 8

Connecting .. 8

Connect Asynchronously ... 9

Get Connection Properties .. 11

Disconnecting .. 11

Reboot ... 11

Logging In .. 12

Log In Asynchronously ... 13

Logging out .. 15

Internal I/O .. 15

Monitor Packet .. 15

Disable / Enable Monitor Packets .. 16

Scheduling the Monitor Packet .. 17

Get Monitor Freshness .. 17

Get Model of the JNIOR ... 17

Get OS Version of the JNIOR .. 18

Get Known JNIOR Time .. 18

Set JNIOR Time... 18

Get Inputs States ... 18

Get Outputs ... 19

Close Output .. 19

Open Output .. 20

Toggle Output .. 20

Pulse Output .. 20

Set Output ... 20

Block Set Relays ... 21

Block Pulse Relays .. 21

Reset Input Latch ... 21

Clear Input Counter ... 21

Clear Input Usage... 22

Clear Output Usage .. 22

External Devices .. 22

External 4 Relay Output Module .. 22

RTD Module ... 22

10 Volt Module .. 23

4 – 20 Milliamp Module ... 23

Temperature Probe ... 23

Registry.. 23

Get Registry Key Handle .. 23

Get Registry Key Unique Id .. 24

Get Registry Key ... 24

Get Registry Key Value ... 24

Set Registry Key Value ... 24

Read Registry Keys ... 24

C# ... 25

Subscribe Registry Keys ... 25

Write Registry Keys .. 26

List Registry .. 27

Miscellaneous .. 27

Time ... 27

Custom Command ... 28

Send Macro Name ... 28

Example Index ... 29

Simple C++ ... 29

Connection Callback .. 29

Jnior Server .. 29

Jnior I/O Usage .. 29

Registry Usage ... 30

Set Clock .. 30

1 As of version 3.1

JNIOR DLL
The JNIOR DLL is designed to expedite the deployment of JNIORs in a custom Windows solution. The
JNIOR DLL implements the JNIOR Protocol in a module that can be used by developers writing custom
applications. This frees up the developer from having to implement communications between the JNIOR
and their application and lets them focus on their solutions business logic.

The JNIOR Protocol is a binary protocol implemented over TCP. The DLL encapsulates the functionality of
the protocol in a DLL and provides function calls to interact with the JNIOR. To learn more about the
protocol please read the JNIOR Communications Protocol document. Describing the protocol is beyond
the scope of this document.

The JNIOR DLL is written in C++ and implements the JNIOR communications. There is a .NET wrapper
DLL written in C#. A developer that wants to implement JNIOR communications only needs the JNIOR
DLL. .NET developers might want the additional JniorDll.Net.dll file as well as the necessary JniorDll.dll
file. The .NET wrapper provides many useful benefits;

• Easy to use and understand classes in an object oriented approach

• Performs data marshalling between .NET and COM

• Defines delegates for creating callback functions

• Contains a few UI controls that are useful for JNIOR operations

NOTE: Before running any of the sample applications please be sure that doing so will not have any
adverse effects. If a JNIOR is connected to a machine and a sample application commands a relay INTEG
is not responsible for any action that is taken. Please only use the samples on a JNIOR that is not
connected to any external equipment unless you, the developer, are fully aware of the logic behind the
application.

Using JniorDll.dll
There are 4 files that you can include in your project.

• JniorDll.h
Contains all of the function prototypes

• JniorConstants.h
Contains the definitions of many constant values

• JniorStructures.h
Contains definitions of the structures that are used in the DLL and that can be used by a
developer

• JniorDll.lib
Necessary for compiling your application

How to include the SDK files in Visual Studio

Right click on the solution explorer and go to add existing.

Navigate to the SDK package and select the four files listed above. Under the “Files of type” drop down
select “All Files”.

You can say “No” if you see the following dialog “Matching Custom Build Rule Not Found”

Your Solution Explorer will now look something like the following

You are now ready to program for the JNIOR using the COM JNIOR DLL

Using JniorDll.Net.dll
Add a reference to your .NET project. Right click in the solution explorer window and go to “Add
Reference…”

Navigate to the SDK package and select the JniorDll.Net.dll file

Click OK and your solution explorer will look like the following

You are now ready to program using the JNIOR .NET DLL. Once the .NET reference is associated
IntelliSense will become available. IntelliSense is Microsoft's implementation of auto-completion. It will
help you in writing applications for the JNIOR using the .NET wrapper.

Synchronous vs. Asynchronous
Most things we do in life are synchronous tasks. This means we have to complete the task before we
can start on the next task. Take loading the dishwasher for example. We must fully unload the
dishwasher before reloading it. If we don’t fully unload the dishwasher then the clean dishes that are
still in the machine will get dirty as the dirty dishes are added. Sticking with the kitchen theme, cooking
is full of asynchronous tasks. We don’t want to have to cook all of the sides before we start the main
course or the sides would be cold be the time the main dish is ready. We want to use asynchronous
processing when we have sections of code that will take a considerable amount of time to complete. UI
programming is an area where we need to use asynchronous processing. We don’t want the interface
to lock up even for short periods of time. Having the interface lock up would lead to a poor user
experience. The JNIOR DLL has taken this in account during its design and offers asynchronous
functions. Connecting and Logging in can be quite time consuming.

Callbacks

There are callbacks defined for the following events. A callback is executable code that is passed as an
argument to other code. It allows a lower-level software layer to call a subroutine (or function) defined
in a higher-level layer. All callbacks are executed in a separate thread to guarantee that DLL processing
does not stop if there is bad code in the client application. Multiple callbacks can be defined for the
following events with the exception of the Accepted Connection callback.

• Connection Events

• Log In Events

http://en.wikipedia.org/wiki/Microsoft�
http://en.wikipedia.org/wiki/Autocompletion�

• Monitor Packet Events

• Registry Key Events

• Communication Events

• Accepted Connection Events (DLL as a Server)

The callbacks use the __stdcall calling convention. The JNIOR DLL has defined a CALLBACK macro that
can be used in place of __stdcall to produce the following function prototype.

return-type CALLBACK function-name[(argument-list)]

Logging
The JNIOR DLL has the option to enable logging. To enable logging simply create a “logs” directory in the
same directory that contains the JNIORDLL.dll file.

Heartbeat
The JNIOR Connection should remain alive as long as it is required. There is overhead associated with
establishing a new connection and logging in. The JNIOR protocol connection requires some sort of
communication to be received from a client at least once every 15 minutes or the JNIOR will close the
connection. Client communication could be in the form of a command, request, or any single byte other
than 0x01. The JNIOR protocol recommends that you use the 0x06(ACK) byte.

The JNIOR DLL takes care of sending a “heartbeat” or keep alive once every 10 seconds. 10 seconds was
chosen because the JNIOR OS was written to not use memory resources if client data is received at least
every 15 seconds.

Features

General
Getting the DLL Version

It is wise in an application to show the version strings of not only your application but the version
numbers of all third party tools as well. This is useful in error reporting. The JNIOR DLL provides the
GetDllVersion(char*) function to expose the version string of the JNIOR DLL. Simply pass in a pointer to
a string that is big enough to hold the version string. The .NET wrapper hides the need to pass in a string
as a parameter and instead just returns the version string. The version string is in the format
major.minor.date.time. For example version 3.1.1221.1421 is version 3.1 built on December 21st at
2:21pm.

C++
// show the version string
char* version = new char[32];
result = GetDllVersion(version);

C#
string version = Jnior.GetDllVersion();

You can see that the .NET wrapper simplifies coding. The actual code that the wrapper performs is as
follows.

StringBuilder dllVersion = new StringBuilder();
jnior_dll_calls.GetDllVersion(dllVersion);
return dllVersion.ToString();

Getting a Description of a Status Code

When calling functions in the DLL, many of them return integer values that have some meaning. All of
these values are defined in the JniorConstants.h file. To get a description of the meaning you can call
the GetStatusDescription(int) function. It will return a string representing a user friendly description of
the supplied status code.

C++
// return some status
int status = someFunction();
// get the description
char* version = GetStatusDescription(status);

C#
// return some status
int status = someFunction();
// get the description
jnior_dll_calls.GetStatusDescription(status).ToString();

Local Server for Incoming Connections

The JNIOR DLL also provides the ability to accept incoming connections. You can configure the JNIOR to
attempt to establish a connection with a server that will host the JNIOR Protocol connection, in this case
the JNIOR DLL. Once this connection is established it will behave as if the PC established the connection.
If there is an anonymous login level set then the login acknowledgement packet is sent to the PC. The
PC side application does not need to perform an additional login.

This architecture might be of interest if there are several JNIORs in an installation but may be behind a
firewall or there IP Addresses are not visible. If the PC has a visible public IP Address then those JNIORs
could be configured to initiate the connection with the JNIOR DLL. If the JNIOR and the server are on
different networks then the gateway address must be set in the JNIOR. For further network help please
contact your networks administrator.

To enable this functionality on the JNIOR set the JniorServer/RemoteIP registry key.

registry JniorServer/RemoteIP = 10.0.0.100

To enable this functionality in the JNIOR DLL the StartServer(CONNECT_PARAMS*) function must be called.
The parameter passed to this function is a pointer to a CONNECT_PARAMS structure. The
CONNECT_PARAMS structure contains an IP Address and the port number of the network adapter to
bind to. The other fields in the CONNECT_PARAMS structure are ignored. This is not the actual case
but should it be? The If the connection is lost both the JNIOR and the DLL will try to reconnect. This is
wrong, right?

C++
// Create a connect params structure to define server information
CONNECT_PARAMS* cp = new CONNECT_PARAMS();
cp->host = "10.0.0.100";
cp->port = 9200;

// Start Server
StartServer(cp);

C#
// start the server
ConnectionProperties cp = new ConnectionProperties(“10.0.0.100”, 9200, 0, 0);
Jnior.StartServer(cp);

To alert the client application when a JNIOR successfully connects there is a Connection Accepted
Callback. To set this callback use the SetAcceptedConnectionCallback() function. The
SetAcceptedConnectionCallback() function should be called before the StartServer() function. This will
ensure that no incoming connections are missed.

C++
// define the callback function
void CALLBACK AcceptedConnectionCallback(int handle) {
 cout << "New JNIOR Connected, the handle is: " << handle << endl;
}

// set the callback function
SetAcceptedConnectionCallback(&AcceptedConnectionCallback);

C#
// define the callback function
private void onAcceptedConnection(Jnior jnior)
{
 Console.WriteLine("New JNIOR Connected, the handle is: " + handle);
}

// Set the callback function
jnior_dll_calls.AcceptedConnectionCallback callback;
callback = new jnior_dll_calls.AcceptedConnectionCallback(onAcceptedConnection));
Jnior.SetAcceptedConnectionCallback(callback);

Creating a Session

A session must be created before the JNIOR can be accessed. We create a session to let the DLL assign
us a unique number that we can use in case we want to use multiple JNIORs with the DLL at one time.
The unique number will be called a handle. The handle is just a 4 byte integer. The handle must be
passed to the DLL with each call. The .NET Wrapper hides this from the developer and it is automatically
passed bases on the object oriented nature of .NET.

C++
// create the jnior session
int handle = CreateJniorSession(NULL);

C#
Jnior m_jnior = new Jnior();

Connecting
As stated the JNIOR is connected to using TCP/IP. TCP is a connection oriented protocol. This means
that we must establish a connection before sending or expecting to receive any commands. To connect
we need to pass the HANDLE of the session to connect to and the pointer to the CONNECT_PARAMS object.
The CONNECT_PARAMS object holds the information about the address of the JNIOR and some connection
rules such as a retry count and a retry interval.

C++
// create our connection parameters
CONNECT_PARAMS* cp = new CONNECT_PARAMS();
cp->host = "10.0.0.146";
cp->port = 9200;
cp->retryCount = 0;
cp->retryInterval = 0;

// connect to the jnior using the handle
cout << "\r\nConnecting...\r\n";
int result = Connect(handle, cp);

C#
ConnectionProperties cp = new ConnectionProperties(“10.0.0.146”, 9200, 0, 0);
m_jnior.Connect(cp);

The result from calling this function will be one of the following values as defined in the JniorConstants.h
file.

#define STATUS_CONNECTING 4
#define STATUS_CONNECTED 6
#define STATUS_CONNECTION_FAILED 7
#define STATUS_CANCELLED 8

Connect Asynchronously
To perform the Connection asynchronously we must call the ConnectAync()function with the same
signature. Behind the scenes the DLL will create another thread to handle the connection. The
ConnectAsync() call will return right away reporting no error.

C++
// create our connection parameters
CONNECT_PARAMS* cp = new CONNECT_PARAMS();
cp->host = "10.0.0.146";
cp->port = 9200;
cp->retryCount = 0;
cp->retryInterval = 0;

// connect to the jnior using the handle
cout << "\r\nConnecting...\r\n";
int result = ConnectAsync(handle, cp);

C#
ConnectionProperties cp = new ConnectionProperties(“10.0.0.146”, 9200, 0, 0);

m_jnior.ConnectAsync(cp);

Processing will continue in the background. In order to be alerted of the status of the connection
attempt we can either poll the IsConnected() function or define a Callback that will be called when there
is a status update. Polling the IsConnected() function is affectively the same as blocking.

C++
bool result = IsConnected(handle);

C#
Bool isConnected = m_jnior.IsConnected();

Define callback

To define the callback we must define a function with the CALLBACKNOTIFY signature. The CALLBACKNOTIFY
is defined as follows:

typedef void (CALLBACK* CALLBACKNOTIFY)(void* args);

The args parameter should be typecast to STATUS_CALLBACK_ARGS.

C++
We must first define a function to act as our callback.

void CALLBACK ConnectionCallback(void* args) {
 STATUS_CALLBACK_ARGS* statusArgs = (STATUS_CALLBACK_ARGS*)args;
 cout << statusArgs->message << endl;

 // if we are connected then we can login
 if (statusArgs->status == STATUS_CONNECTED) {
 // do something...
 }
}

Now we assign the callback to our session.

// add a callback to receive the status of the connection operation
AddConnectionCallback(handle, &ConnectionCallback);

C#
We must first define a function to act as our callback. Our .NET wrapper again hides some critical
functionality and exposes the following delegate as our function signature.

public delegate void StatusCallback(Jnior jnior, StatusArgs args);

This means our callback function does not need to typecast the args parameter.

private void OnConnectionNotify(Jnior jnior, StatusArgs args)
{
 Console.WriteLine(args.messege);

if (args.status == STATUS_CONNECTED) {
 // do something...

}
}

Now we assign the callback to our session.

// add a connection callback
m_jnior.AddConnectionCallback(new jnior_dll_calls.StatusCallback(OnConnectionNotify));

Get Connection Properties

If it is ever desired to get the properties that were used in establishing the connection one can call the
GetConnectionProperties() function.

C++
You will need to declare a pointer to a CONNECTION_PARAMS object that can be passed as the second
parameter.

// declare a CONNECT_PARAMS object
CONNECT_PARAMS* cp = new CONNECT_PARAMS();
// call GetConnectionProperties
GetConnectionProperties(handle, cp);

C#
ConnectionProperties cp = m_jnior.GetConnectionProperties();

Disconnecting
To disconnect from the JNIOR call the Disconnect() function.

C++
Disconnect(handle);

C#
m_jnior.Disconnect();

Reboot

To reboot the JNIOR call the Reboot() function. When the Reboot() function is called and the connection
is closed the DLL will wait for 90 seconds before trying to reestablish the connection. It is known that
the JNIOR should take a little over 90 seconds to perform the reboot process.

C++
Reboot(handle);

C#
m_jnior.Reboot();

Logging In
Logging in is an essential operation in the JNIOR Protocol. The login can be optionally disabled but is
enabled by default. You can also optionally leave the login enabled but specify an anonymous login level
that will be granted to all connections. To login we need to pass the HANDLE of the session and the
pointer to the CREDENTIALS object. The CREDENTIALS object holds the information about the login
options.

Login Levels

There are three login levels on the JNIOR. The three levels are guest, user, and administrator. The user
login level allows monitoring of I/O only and has a login level of 0. The user login level allows you to
monitor and control the I/O and has a login level of 64. The administrator login level allows monitoring
and controlling the I/O as well as configuring the JNIOR. The administrator login level is 128.

Anonymous

If the JniorServer/Anonymous key has been defined in the Registry an anonymous login will be allowed.
An anonymous login request contains both blank Username and blank Password strings. The anonymous
login must be successfully performed to enable protocol operation. The Registry key defines the integer
(0-254) User ID to be used for anonymous access. A value of 0 (zero) is recommended. User IDs of 128 or
greater are equivalent to an administrator login. To disable anonymous usage the
JniorServer/Anonymous key must not appear in the Registry (valid content or not).

Predefined Login Credentials

Each login level has at least one predefined credential. The guest credential is “guest” for the username
and “guest” for the password. The user credential is “user”, “user”. Lastly the administrator login level
has two credentials. The first one is, you guessed it “admin”, “admin”. The second predefined
credential is “jnior”, “jnior”.

C++
// create our credentials object. use the default jnior, jnior login
// credential for an admin login.
CREDENTIALS* creds = new CREDENTIALS();
creds->username = "jnior";
creds->password = "jnior";

// login using our handle obtained earlier
int result = Login(handle, creds);

C#
// create our credentials object. use the default jnior, jnior login
// credential for an admin login.
LoginProperties lp = new LoginProperties(txtUserName.Text, txtPassword.Text);

// perform the login
m_jnior.Login(lp);

Encoding

By default the Username and Password are transferred in clear text. This means that someone able to
monitor network traffic may view packet content and will be able to see your login information. This
may be of concern when communicating with JNIOR over public networks. Optionally encode can be
enabled. This renders the login information in a format that is not easily read by humans. Note that this
a minimal step and by no means represents true security. It will however minimize the temptation
associated with accidentally discovering a user’s password. To enable encoding set the encode field of
the CREDENTIALS object to true.

C++
// create our credentials object. use the default jnior, jnior login
// credential for an admin login.
CREDENTIALS* creds = new CREDENTIALS();
creds->username = "jnior";
creds->password = "jnior";
creds->encode = true;

// login using our handle obtained earlier
int result = Login(handle, creds);

C#
// create our credentials object. use the default jnior, jnior login
// credential for an admin login.
LoginProperties lp = new LoginProperties(txtUserName.Text, txtPassword.Text);
Lp.Encode = true;

// perform the login
m_jnior.Login(lp);

Log In Asynchronously
Logging in to the JNIOR can take a few seconds. This is a situation where if called from the UI thread the
UI would become unresponsive. The JNIOR DLL provides an asynchronous call for logging in. The
asynchronous login function has the same signature as the login function but the name in LoginAsync.
Again we should define a callback to accept the login state events.

C++
// create our credentials object. Use the default jnior, jnior login
// credential for an admin login.
CREDENTIALS* creds = new CREDENTIALS();
creds->username = "jnior";
creds->password = "jnior";

// login using our handle obtained earlier
int result = LoginAsync(handle, creds);

C#
// create our credentials object. Use the default jnior, jnior login
// credential for an admin login.
LoginProperties lp = new LoginProperties(txtUserName.Text, txtPassword.Text);

// perform the login
m_jnior.LoginAsync(lp);

The status of the login can be checked by calling the IsLoggedIn() function. Calling this function will
simply return a Boolean value indicating whether the session is successfully logged into a guest, user, or
administrator account.

C++
bool result = IsLoggedIn(handle);

C#
Bool isLoggedIn = m_jnior.IsLoggedIn();

To determine the login level of the session call the GetLoginStatus(). This function returns on of the
following values as defined in the JniorConstants.h file.

#define STATUS_NOT_LOGGED_IN 100
#define STATUS_LOGGED_OUT 101
#define STATUS_LOGGING_IN 102
#define STATUS_LOGGED_IN_GUEST 103
#define STATUS_LOGGED_IN_USER 104
#define STATUS_LOGGED_IN_ADMIN 105
#define STATUS_LOGIN_FAILED 106
#define STATUS_LOGIN_INCORRECT_LEVEL 107

C++
int loginStatus = GetLoginStatus(handle);

C#
int loginStatus = m_jnior.GetLoginStatus();

Define callback

To define the callback we must define a function with the CALLBACKNOTIFY signature. The CALLBACKNOTIFY
is defined as follows:

typedef void (CALLBACK* CALLBACKNOTIFY)(void* args);

The args parameter should be typecast to STATUS_CALLBACK_ARGS.

C++
We must first define a function to act as our callback.

void CALLBACK LoginCallback(void* args) {
 STATUS_CALLBACK_ARGS* statusArgs = (STATUS_CALLBACK_ARGS*)args;
 cout << statusArgs->message << endl;

 // if we are connected then we can login
 if (statusArgs->status == STATUS_LOGGED_IN_ADMIN) {
 // do something...
 }
}

// add a callback to receive the status of the login operation
AddLoginCallback(handle, &LoginCallback);

C#
We must first define a function to act as our callback. Our .NET wrapper again hides some critical
functionality and exposes the following delegate as our function signature.

public delegate void StatusCallback(Jnior jnior, StatusArgs args);

This means our callback function does not need to typecast the args parameter.

private void OnLoginNotify(Jnior jnior, StatusArgs args)
{
 Console.WriteLine(args.messege);

if (args.status == STATUS_LOGGED_IN_ADMIN) {
 // do something...

}
}

// Now we assign the callback to our session.
m_jnior.AddLoginCallback(new jnior_dll_calls.StatusCallback(OnLoginNotify));

Logging out
To logout we can try login but with “bad” credentials. A blank username and password is not always a
bad credential. In the case where an anonymous login is set, blank username and passwords are sent.

Internal I/O
Internal I/O is represented by the Monitor Packet. The internal I/O of the JNIOR model 310 is 8 optically
isolated digital inputs and 8 dry contact relays. The inputs can act as digital counters and can count
accurately up to 2000 counts per second. Both the inputs and outputs have usage meters that are
accurate to a resolution of a millisecond.

Monitor Packet
The monitor packet contains information pertaining to the states of the Internal I/O. The values for the
Inputs are the state, counters and alarm states. The values for the outputs are just the state of the

output. A monitor packet is once the login in completed successfully and anytime there is a change to
the internal I/O.

Define Callback

C++
void CALLBACK MonitorCallback(void* args) {
 if(WaitForSingleObject(hMonitorCallbackMutex, 10000)==WAIT_TIMEOUT) {
 return;
 }

 MONITOR_CALLBACK_ARGS* monitorArgs = (MONITOR_CALLBACK_ARGS*)args;

 char inputStates[9];
 char outputStates[9];

 inputStates[8] = outputStates[8] = '\0';

 for (int i = 7; i >= 0; i--) {
 inputStates[i] = monitorArgs->monitor->inputs[i].state + '0';
 outputStates[i] = monitorArgs->monitor->outputs[i].state + '0';
 }

 time_t time = (time_t)monitorArgs->monitor->jniorTime / 1000;
 char log[128];
 sprintf(log, "Inputs: %s, Outputs: %s, Time: %s\r\n", inputStates, outputStates,

ctime(&time));
 cout << log;

 ReleaseMutex(hMonitorCallbackMutex);
}

// add a callback to receive the status of the connection operation
AddMonitorCallback(handle, &MonitorCallback);

C#
private void OnMonitorNotify(Jnior jnior, MonitorArgs args)
{

StringBuilder sbInputs = new StringBuilder();
StringBuilder sbOutputs = new StringBuilder();

int inputs = jnior.GetInputs();
int outputs = jnior.GetOutputs();

for (int i = 7; i >= 0; i--)
{

sbInputs.Append(jnior.GetInput(i));
sbOutputs.Append(jnior.GetOutput(i));

}

DateTime jniorTime = Jnior.EPOCH.AddMilliseconds(args.Monitor.jniorTime);
string timeString = jniorTime.ToLocalTime().ToString("M/dd/yyyy HH:mm:ss.fff");

Console.WriteLine("Inputs: " + sbInputs.ToString() + ", Outputs: " +

sbOutputs.ToString() + ", Time : " + timeString);
}

// add the monitor callback
m_jnior.AddMonitorCallback(new jnior_dll_calls.MonitorCallback(OnMonitorNotify));

Disable / Enable Monitor Packets
When there are situations that cause changes to the internal I/O very rapidly it is recommended that

Monitor Packets are disabled. To do this we call the DisableMonitorPackets() for a JNIOR session. The
Monitor Packets can be re-enabled at any time by using the EnableMonitorPackets() function.

C++
int result = DisableMonitorPackets(handle);
int result = EnableMonitorPackets(handle);

C#
m_jnior.DisableMonitorPackets();
m_jnior.EnableMonitorPackets();

Scheduling the Monitor Packet

The monitor packet can be scheduled to come on a specified interval. In some cases you might want to
guarantee that you application hears from the JNIOR at least every 30 seconds for example. Using the
RequestMonitorPacket() function can accomplish this task. The scheduled monitor packet can be used
instead of the unsolicited monitor packet or in addition to it. The second parameter in the
RequestMonitorPacket() function is the integer representing a time interval in milliseconds. If you
specify a value of zero then you will receive a single monitor packet.

C++
int result = RequestMonitorPacket(handle, 30000);

C#
m_jnior.RequestMonitorPacket(30000);

Get Monitor Freshness
Sometimes you might want to know how long ago the last monitor packet was received. For this you
would call the GetMonitorFreshness() function. This function simply returns the number of milliseconds
since the last monitor packet was received.

C++
long long millis = GetMonitorFreshness(handle);

C#
long millis = m_jnior.GetMonitorFreshness();

Get Model of the JNIOR
Currently there is only the JNIOR Model 310. The model of the JNIOR is embedded in the monitor
packet and can be retrieved via the GetModel() function. You need to pass a string pointer as the second
parameter to this function.

C++
// some code

C#
// some code

Get OS Version of the JNIOR
The version of the operating system that is currently running on the JNIOR can be obtained by calling the
GetSoftwareVersion() function. You need to pass a string pointer as the second parameter to this
function.

C++
// some code

C#
// some code

Get Known JNIOR Time
If you want to know the time on the JNIOR you can call the GetKnownJniorTime() function. This function
returns the number of milliseconds since January 1st 1970 as reported by the last monitor packet
received. Note, the JNIOR is not asked for its time during this call. SHOULD IT BE?

C++
long long millis = GetKnownJniorTime(handle);

C#
long millis = m_jnior.GetKnownJniorTime();

Set JNIOR Time
The JNIOR can be configured to synchronize its time with a Network Time Protocol Server (NTP). In
cases where this is not possible, the time can be set by calling the SetClock() function. This function
takes a parameter that specifies the number of milliseconds since January 1st, 9170.

C++
// some code

C#
// some code

Get Inputs States
To get the status of the inputs you have three options. Your first option is to call the GetMonitor()
function which returns a pointer to a JNIOR_MONITOR structure. You can then access the fields in the
JNIOR_MONITOR structure to get the states. Option 2 is to call the GetInputs() function. This function
returns a binary mask representing the state of all of the inputs in one value. Lastly you can call the

GetInput() function and pass in the channel of the input you want the state of. This parameter is a zero
based index of the channels.

C++
// option 1
JNIOR_MONITOR* monitor = GetMonitor(handle);
for (int i = 0; i < 8; i++) {
 int state = monitor->inputs[i].state;
}

// option 2
int states = GetInputs(handle);

// option 3
int state = GetInput(handle, 0);

C#
// some code

Get Outputs
To get the status of the outputs you have three options. Your first option is to call the GetMonitor()
function which returns a pointer to a JNIOR_MONITOR structure. You can then access the fields in the
JNIOR_MONITOR structure to get the states. Option 2 is to call the GetOutputs() function. This function
returns a binary mask representing the state of all of the outputs in one value. Lastly you can call the
GetOutput() function and pass in the channel of the output you want the state of. This parameter is a
zero based index of the channels.

C++
// option 1
JNIOR_MONITOR* monitor = GetMonitor(handle);
for (int i = 0; i < 8; i++) {
 int state = monitor->outputs[i].state;
}

// option 2
int states = GetOutputs(handle);

// option 3
int state = GetOutput(handle, 0);

C#
// some code

Close Output
This function will close a single output. If the output is already closed then no physical change occurs.
This will cause the JNIOR to generate a monitor packet whether a change in I/O occurs or not.

C++
// some code

C#
// some code

Open Output
This function will open a single output. If the output is already open then no physical change occurs.
This will cause the JNIOR to generate a monitor packet whether a change in I/O occurs or not.

C++
// some code

C#
// some code

Toggle Output
This function will toggle a single output. If the output is closed then it will open. If the output is
currently open then it will be closed. Note that using toggle is not programmatically sound in many
cases as the current state is not known and it is possible that the code on the client and the actual JNIOR
output state can get “out of sync”. It is best practice to explicitly set the state of the output.

C++
// some code

C#
// some code

Pulse Output
This function will pulse a single output closed for a given period of time defined in milliseconds. If the
output is already closed then no physical change occurs but the pulse timer will still count down. Only
one pulse can be processed at a time. If a pulse is in progress and another pulse is commanded the
latter pulse will be queued and will commence once the original pulse is completed. A total of 31 pulses
can be queued.

C++
// some code

C#
// some code

Set Output
This function is much like the CloseOutput() and OpenOutput() functions. It combines the functionality
of those two functions into one. The third parameter in this function accepts either a zero or a one
specifying if the output should the open (zero) or closed (one).

C++
// some code

C#
// some code

Block Set Relays
Multiple relays can be commanded to open or close simultaneously using the BlockSetRelays() function
by specifying a channel mask, which channels are affected by this operation, and a states mask, the new
states of the affected channels.

C++
// some code

C#
// some code

Block Pulse Relays
Multiple relays can be commanded to pulse open or closed simultaneously using the BlockPulseRelays()
function by specifying a channel mask, which channels are affected by this operation, and a states mask,
the new states of the affected channels. A third parameter specifies the duration in milliseconds that
the pulse should last.

C++
// some code

C#
// some code

Reset Input Latch
Latching is the process of remembering the state of the input. If an input state must remain high for a
long period of time but the actual state of the signal is brief then an input latch can be configured to
provide this functionality. If an input state must be held high for some period of time until some
software checks on the state the software can clear the latch once it is done processing the state. To
accomplish clearing the latch we use the ResetInputLatch() function.

C++
// some code

C#
// some code

Clear Input Counter
As discussed before the inputs on the JNIOR can act as counters. Each counter is an unsigned 4 byte
integer. The value will range from 0 – 4,294,967,296. Once the counter goes beyond 4,294,967,296

then rollover will occur and resume counting at 0. A custom application can reset the counter value to 0
at any time using the CelarInputCounter() function. The value can be set to a non-zero value using the
jrmon command line command. Please refer to the Command Line Interface document.

C++
// some code

C#
// some code

Clear Input Usage
As discussed before the inputs on the JNIOR have usage meters. Each usage meter is a signed 8 byte
integer. The value will range from 0 – 9,223,372,036,854,775,807. A custom application can reset the
usage meter at any time using the ClearInputUsage() function.

C++
// some code

C#
// some code

Clear Output Usage
As discussed before the outputs on the JNIOR have usage meters. Each usage meter is a signed 8 byte
integer. The value will range from 0 – 9,223,372,036,854,775,807. A custom application can reset the
usage meter at any time using the ClearInputUsage() function.

C++
// some code

C#
// some code

External Devices
The External Devices are not implemented in this DLL.

External 4 Relay Output Module
This module has 4 relay outputs. They function much like the internal outputs in regards to open, close,
and toggle. Pulsing is different since more than one pulse can happen concurrently. Pulses are not
queued.

RTD Module
The RTD module has 4 channels of thermocouples.

10 Volt Module
The 10 Volt module has 4 input channels and 2 output channels.

4 – 20 Milliamp Module
The 4 – 20 Milliamp module has 4 input channels and 2 output channels.

Temperature Probe
The temperature probe reads temperatures from -40 degrees Celsius to +140 degrees Celsius.

Registry
Interaction with the JNIOR registry system is a little more complex than interacting with the I/O. The
registry system is analogous to the registry system on a Windows PC. The registry system is a set of
Name Value pairs. You can write and read registry keys. You can also subscribe to registry keys allowing
your application to get updates when registry key values are changed.

The registry is saved to a jnior.ini file on the JNIOR in flash memory. Flash memory is a non-volatile
computer storage that can be electrically erased and reprogrammed. Flash is slower than RAM memory.
It is even slower on the JNIOR. Once every couple of minutes the JNIOR checks to see if there were any
changes to the registry system. If there were changes then the jnior.ini file is regenerated.

Registry keys that have a node entry that starts with a ‘$’ are called temporary registry keys. Temporary
registry keys not saved to the jnior.ini file and are not counted as a change to the registry system. This
means that temporary registry keys do not cause the file to be regenerated. Examples of temporary
registry keys are $BootTime, $SerialNumber, $Model, and $Version. Custom applications can define
temporary registry keys. Demo/$Test and $Demo/Test are both temporary registry keys. The difference
is that the every registry key under the $Demo folder will be a temporary registry key.

If you are programming in .NET then it is wise to get the Registry instance from the JNIOR session.

Registry registry = jnior.GetRegistryInstance();

You can then use the registry object over and over without calling jnior.GetRegistryInstance() every
time.

Get Registry Key Handle
The JNIOR DLL is responsible for creating and maintaining the registry key structures. To return a
registry key structure you must call the GetRegistryKeyHandle() function. This function returns a pointer
to a registry key structure.

Get Registry Key Unique Id
To get the unique id assigned to a registry key call the GetRegistryKeyId() function. By passing in the
handle of the session and the registry key pointer the function will return an integer value that is the
unique id associated with the registry key. The unique id is used for communications between the DLL
and the JNIOR.

Get Registry Key
To get the registry key of the registry key structure call the GetRegistryKey() function. By passing in the
handle of the session, the registry key pointer and a pointer to a string that will hold the registry key the
function will fill the string with the registry key.

Get Registry Key Value
To get the value of the registry key structure call the GetRegistryKeyValue() function. By passing in the
handle of the session, the registry key pointer and a pointer to a string that will hold the get registry key
value the function will fill the string with the registry key value.

Set Registry Key Value
In addition to getting the registry key value of a registry key structure, you can set the value. To set the
value of the registry key structure by calling the SetRegistryKeyValue() function. By passing in the
handle of the session, the registry key pointer and a pointer to a string that is the new value the set
registry key value the function will fill the structure with the given value.

Read Registry Keys
To read a registry key use the ReadRegistryKeys() function. You can read multiple registry keys with one
call to this function. Reading the registry keys can also be performed in an asynchronous method. To do
so call the ReadRegistryKeysAsync() function. There must be a callback function defined.

C++
// create an array of 4 registry keys.
REGISTRY_KEY** regKeys = new REGISTRY_KEY*[4];

// get the REGISTRY_KEY pointer for the $serialnumber registry key
regKeys[0] = GetRegistryKeyHandle(handle, "$SerialNumber");
// get the REGISTRY_KEY pointer for the $model registry key
regKeys[1] = GetRegistryKeyHandle(handle, "$Model");
// get the REGISTRY_KEY pointer for the $version registry key
regKeys[2] = GetRegistryKeyHandle(handle, "$Version");
// get the REGISTRY_KEY pointer for the $boottime registry key
regKeys[3] = GetRegistryKeyHandle(handle, "$BootTime");

// now that we have obtained the registry key handles, lets read the values.
// these values will never change while the JNIOR is running. so we will only
// read them.
result = ReadRegistryKeys(handle, regKeys, 4, "");

for (int i = 0; i < 4; i++) {

cout << regKeys[i]->key << " = " << regKeys[i]->value << endl;
}

C#
RegistryKey[] regKeys = new RegistryKey[4];

Registry registry = m_jnior.GetRegistryInstance();
// get the REGISTRY_KEY pointer for the $serialnumber registry key
regKeys[0] = registry.GetRegistryKey("$SerialNumber");
// get the REGISTRY_KEY pointer for the $model registry key
regKeys[1] = registry.GetRegistryKey("$Model");
// get the REGISTRY_KEY pointer for the $version registry key
regKeys[2] = registry.GetRegistryKey("$Version");
// get the REGISTRY_KEY pointer for the $boottime registry key
regKeys[3] = registry.GetRegistryKey("$BootTime");

registry.ReadRegistryKeys(regKeys, "");

foreach (RegistryKey regKey in regKeys)
{

Console.WriteLine(" {0} = {1}", regKey.Key, regKey.Value);
}

Subscribe Registry Keys
Registry keys can be subscribed to. This means that your application will be alerted of any changes
through the Registry Callback. Registry key subscriptions add additional overhead on the JNIOR. Use
subscriptions only when needed. To subscribe to a single registry key or block of registry keys use the
SubscribeRegistryKeys() function. Subscribing to the registry keys can also be performed in an
asynchronous method. To do so call the SubscribeRegistryKeysAsync() function. There must be a
callback function defined.

C++
void CALLBACK RegistryCallback(void* args)
{
 REGISTRY_CALLBACK_ARGS* registryArgs = (REGISTRY_CALLBACK_ARGS*)args;

 cout << registryArgs->count << " registry keys returned" << endl;

 REGISTRY_KEY** regKeys = registryArgs->keys;
 for (int i = 0; i < registryArgs->count; i++) {
 cout << regKeys[i]->key << " = " << regKeys[i]->value << endl;
 }
}

…

// assign the callback
AddRegistryCallback(handle, &RegistryCallback);

// create an array of 1 registry key.
REGISTRY_KEY** regKeys = new REGISTRY_KEY*[1];

// get the REGISTRY_KEY pointer for the $hourmeter registry key
regKeys[0] = GetRegistryKeyHandle(handle, "IO/Outputs/rout1/$HourMeter");

// the hour meter will change. Subscribe to this key.
result = SubscribeRegistryKeysAsync(handle, regKeys, 1, "");

C#
private static void RegistryCallback(Jnior jnior, RegistryArgs args)
{

Console.WriteLine("{0} registry keys returned", args.Count);
foreach (RegistryKey regKey in args.Keys)
{

Console.WriteLine(" {0} = {1}", regKey.Key, regKey.Value);
}

}

…

registry.AddRegistryCallback(new jnior_dll_calls.RegistryCallback(RegistryCallback));

// get the REGISTRY_KEY pointer for the $hourmeter registry key
RegistryKey hourMeterRegKey = registry.GetRegistryKey("IO/Outputs/rout1/$HourMeter");

// the hour meter will change. Subscribe to this key.
int result = registry.SubscribeRegistryKeyAsync(hourMeterRegKey, "");

Write Registry Keys
You can write a registry key or block of registry keys to the JNIOR by using the WriteRegistryKeys()
function. Registry keys that are written to with a blank value are removed from the registry system.
Also registry keys containing a space must be enclosed in quotes. Writing to the registry can also be
performed in an asynchronous method. To do so call the WriteRegistryKeysAsync() function.

C++
REGISTRY_KEY** regKeys = new REGISTRY_KEY*[1];

// get the REGISTRY_KEY pointer for the demo registry key
regKeys[0] = GetRegistryKeyHandle(handle, "demo/test");

SetRegistryKeyValue(handle, regKeys[0], "Look at me");

// write the keys
WriteRegistryKeys(handle, regKeys, 1);

C#
// writing to a registry key
RegistryKey demoKey = registry.GetRegistryKey("demo/test");
demoKey.Value = "Look at me in CSharp";

// write the keys
registry.WriteRegistryKey(demoKey);

List Registry
You can list the children of a registry node with the ListRegistry() function. This function will NOT
block until the list is returned, instead the registry listing callback will be notified. A registry listing
callback must be defined. The path string must NOT contain the trailing ‘/’ character.

C++
void CALLBACK RegistryListingCallback(void* args)
{
 REGISTRY_LISTING_CALLBACK_ARGS* registryListingArgs =

(REGISTRY_LISTING_CALLBACK_ARGS*)args;

 cout << registryListingArgs->count << " registry keys returned" << endl;

 for (int i = 0; i < registryListingArgs->count; i++) {
 cout << " " << registryListingArgs->keyNames[i] << endl;
 }
}

…

// add a registry listing callback
AddRegistryListingCallback(handle, &RegistryListingCallback);

// get a registry node listing for the root node
ListRegistry(handle, "");

C#
private static void RegistryListingCallback(Jnior jnior, RegistryListingArgs args)
{

Console.WriteLine("{0} registry keys returned", args.Count);
foreach (string regKey in args.KeyNames)
{

Console.WriteLine(" {0}", regKey);
}

}

…

// add a registry listing callback
registry.AddRegistryListingCallback(new

jnior_dll_calls.RegistryListingCallback(RegistryListingCallback));

// get a registry node listing for the root node
registry.ListRegistryAsync("");

Miscellaneous

Time
The JNIOR has the ability to keep track of time. This is crucial for many OS functions. The time is
embedded in every monitor packet as well as the usage meter packet. There is also a special packet that
can be requested that contains the JNIOR time. To request the JNIOR time you can either request a

monitor packet or the time packet. The RequestMonitorPacket() will return immediately and therefore it
cannot be assumed the time has been returned. You will have to set up callback described in the
Internal I/O section. To request the time packet simply use the RequestClock() function. In the .NET DLL
the DateTime object will be returned.

C++
Long long jniorTime = RequestClock(handle);

C#
DateTime jniorTime = m_jnior.RequestClock();

The time on the JNIOR can also be set via the JNIOR protocol.

C++
// some code

C#
// some code

Custom Command
The JNIOR has the ability to run a custom application written in Java. For more information on witting
applications in Java to run on the JNIOR please refer to the Embedded Applications Programming
manual. Sometimes it might be necessary to communicate between a PC application and the
application running on the JNIOR. You can use registry keys at times to facilitate some interaction but
other times a different approach is needed. The CustomCommand() function allows you to send a 64K byte
array between a PC application and a JNIOR application.

C++
// some code

C#
// some code

Send Macro Name
Sending a macro name is used in INTEGs cinema.jnior application. This is a specific function dedicated to
communicating with the cinema.jnior application.

C++
// some code

C#
// some code

Example Index
The examples contained in this SDK show various features of the JNIOR. The JNIOR protocol connection
is TCP and therefore requires a connection. Before any feature is used a connection must be
established. Some features require a login verification step to be performed. There are different ways
to perform the connection and login steps. Each sample may take a different approach to accomplishing
these actions.

Simple C++

This sample is the minimum implementation of using the JNIOR DLL.

Calls used: CreateJniorSession(), Connect(), Login(), ToggleOutput()

Connection Callback

This sample shows the same steps as the Simple C++ sample but with an asynchronous implementation.
Callbacks are defined for the Connection and Login operations.

Calls used: CreateJniorSession(), AddConnectionCallback(), ConnectAync(), AddLoginCallback(),
LoginAync (), AddMonitorCallback(), ToggleOutput()

Jnior Server

This sample demonstrates how to instruct the DLL to start its internal local server to listen for incoming

JNIOR connections.

Calls used: SetAcceptedConnectionCallback(), StartServer()

Jnior I/O Usage
This example shows how to interact with the JNIORs internal I/O y using the .NET DLL.

Calls used: Connect(), Login(), ToggleOutput()

Registry Usage
This sample shows the basic usage of the registry system on the JNIOR. Reading registry key, subscribing

to registry keys and writing registry keys are implemented in this example. Subscribing to registry keys

uses registry callbacks to be alerted when registry key changes are received.

Calls used: CreateJniorSession(), Connect(), Login(), GetRegistryKeyHandle(), ReadRegistryKeys(),
AddRegistryCallback(), SubscribeRegistryKeysAsync(), SetRegistryKeyValue(), WriteRegistryKeys(),
AddRegistryListingCallback(), ListRegistryAsync(), CloseOutput()

Set Clock
This sample shows how to interact with the JNIOR to get and set the JNIOR clock using the .NET DLL

Calls used: Connect(), Login(), AddMonitorCallback(), SetClock(), RequestClock()

	JNIOR DLL
	Using JniorDll.dll
	Using JniorDll.Net.dll
	Synchronous vs. Asynchronous
	Logging
	Heartbeat

	Features
	General
	C++
	C#
	C++
	C#
	C++
	C#
	C++
	C#
	C++
	C#

	Connecting
	C++
	C#
	Connect Asynchronously
	C++
	C#
	C++
	C#
	C++
	C#
	C++
	C#
	C++
	C#
	C++
	C#

	Logging In
	C++
	C#
	C++
	C#
	Log In Asynchronously
	C++
	C#
	C++
	C#
	C++
	C#
	C++
	C#

	Logging out

	Internal I/O
	Monitor Packet
	C++
	C#
	C++
	C#
	C++
	C#

	Get Monitor Freshness
	C++
	C#

	Get Model of the JNIOR
	C++
	C#

	Get OS Version of the JNIOR
	C++
	C#

	Get Known JNIOR Time
	C++
	C#

	Set JNIOR Time
	C++
	C#

	Get Inputs States
	C++
	C#

	Get Outputs
	C++
	C#

	Close Output
	C++
	C#

	Open Output
	C++
	C#

	Toggle Output
	C++
	C#

	Pulse Output
	C++
	C#

	Set Output
	C++
	C#

	Block Set Relays
	C++
	C#

	Block Pulse Relays
	C++
	C#

	Reset Input Latch
	C++
	C#

	Clear Input Counter
	C++
	C#

	Clear Input Usage
	C++
	C#

	Clear Output Usage
	C++
	C#

	External Devices
	External 4 Relay Output Module
	RTD Module
	10 Volt Module
	4 – 20 Milliamp Module
	Temperature Probe

	Registry
	Get Registry Key Handle
	Get Registry Key Unique Id
	Get Registry Key
	Get Registry Key Value
	Set Registry Key Value
	Read Registry Keys
	C++

	C#
	Subscribe Registry Keys
	C++
	C#

	Write Registry Keys
	C++
	C#

	List Registry
	C++
	C#

	Miscellaneous
	Time
	C++
	C#
	C++
	C#

	Custom Command
	C++
	C#

	Send Macro Name
	C++
	C#

	Example Index
	Jnior I/O Usage
	Registry Usage
	Set Clock

