
AN02 ©2017 INTEG 1 August 3, 2017

Using JSON in a Database Oriented Application on
the JNIOR Series 4 Controller

Bruce S. Cloutier

INTEG Process Group, Inc., bruce.cloutier@integpg.com

Abstract – The JNIOR Controller is a generic device that
is used in a variety of control and monitoring solutions.
Application programs are executed by the operating
system and can be used to optimize the controller for any
particular purpose. Applications that collect data often
can benefit from the services of a database engine. The
JANOS operating system on the Series 4 JNIOR
controller supports native JSON functionality. This
paper demonstrates how JSON can provide simple
database functionality in the absence of an actual
database engine. This has the added benefit of creating
database files that are directly compatible with dynamic
web pages.

Index Terms – JSON Database, Database Engine,
Monitoring, JNIOR Configuration, Honeypot, Mirai
Malware.

JNIOR CONTROLLER

The JNIOR is a networked controller which can be
considered to be a member of the Internet of Things (IoT). It
was developed long before these terms and classifications
were coined. It was intended to be, and successfully achieves
the role of an inexpensive alternative to more elaborate and
costly industrial control systems. This format of device has
been available in a series of successive compatible models
for over 15 years. It provides integrators with a consistent
and reliable source of controller hardware.

The term JNIOR is an acronym which stands for Java
Network Input Output Resource [1]. It can be pronounced as
“junior” although the name is not intended to diminish the
device’s role in the world of controllers. In fact, beyond
simply providing remote I/O resources, the JNIOR is
programmable and is capable of providing sophisticated
distributed control logic and data monitoring. It can
perform autonomously as a stand-alone system.

JANOS OPERATING SYSTEM

The JNIOR comes with its own Operating System. This is a
complete preemptive multitasking operating system with all
of the generic functionality found in multiuser computing
systems. This includes a full network stack with secure
protocols and a fully functional web server with server-side
scripting capabilities.

The JANOS Operating System has been completely
developed by INTEG and specifically for use with the

JNIOR. This has allowed the system to be optimized for its
function without extraneous overhead. It allows the
inexpensive microcontroller at the heart of the JNIOR to
perform the tasks of more complicated computing platforms.

Being fully developed by INTEG this OS contains no
third-party source code. The advantage here is that when
issues are identified, INTEG is 100% in a position to resolve
the problem. In fact, many issues can be corrected the same
day that they are identified. There is no one else to blame
and issues cannot be “elevated”. There is no outside group
wherein issues become subject to separate prioritization,
independent release schedules, and code obsolescence.
Issues just get resolved.

Perhaps as important is the ability to easily expand
functionality. For example JANOS natively implements
JavaScript Object Notation (JSON) [2] in direct support of
external web interfaces. This feature can have other benefits.
We will elaborate in this paper through an example
demonstrating how this JSON functionality can be used to
provide database support for application programs.

APPLICATION PROGRAMMING

The JNIOR out of the box is fully functional as a remote I/O
device. It can be used without running any specialized
Application Program. An application program however
gives the user the ability to add unique and custom
capabilities to the device. INTEG provides stock application
programs such as cinema.jar which creates an environment
specific to Digital Cinema where cues and other signals
trigger definable macros. While there is a set of available
programs, additional programs can be developed by the user
to support a wide range of custom needs.

You can do almost anything with an application
program. Providing documentation to support that flexibility
is somewhat difficult. INTEG is therefore willing to freely
support your programming efforts. All you have to do is
contact us and let us work with you.

Since the introduction of the Series 4 JNIOR,
application programming has been greatly simplified. These
programs are written in standard Java and any of the
available compiler tools can be used. You need only
generate a JAR file. We are most familiar with Netbeans
where there are simple configuration steps that insure that
your project is built against the JanosClasses.jar runtime
environment. Your program needs to be compiled to run
under this specific runtime and to not reference any standard

AN02 ©2017 INTEG 2 August 3, 2017

classes as might be supplied for programs targeted to run on
PCs and other devices.

The JanosClasses.jar runtime file can be retrieved from
the JNIOR as it resides in the /etc folder. This library is
JANOS version specific and programs compiled against one
version are guaranteed to be compatible with later versions.
A version of this JAR file is available that contains Javadoc
and source code references in addition to the set of runtime
classes.

HONEYPOT TESTING

The JNIOR is a secure device. It is expected to be
completely functional and secure in difficult environments
such as the Internet. History has shown us that this open
network environment is hostile and devices such and the
JNIOR can fall victim to malicious attacks. INTEG has
placed a development unit on the open network at the
address honeypot.integpg.com. We monitor its performance
daily.

When a controller such as the JNIOR is placed in a
potentially hostile network environment, we recommend that
the unit be configured to minimize the network footprint.
Only necessary functions (ports) should be left open/active.
Certainly a minimum number of user accounts should be
active and the passwords should be strong (especially not
left as default passwords). Access should be through secure
protocols such as HTTPS.

Immediately at the start of these honeypot tests we
detected a high level of illicit login attempts on the unit’s
Telnet port (23). Analysis proved that the Mirai Botnet [3]
was the leading source of this activity. As JANOS logged
the login failures and the quantity of reports grew, it
occurred to us that an application to track and map the
source locations for each attack would be interesting to
develop. Where in the world are all of these infected
machines? This also would give the HoneyPot JNIOR
something interesting to do while expanding the scope of our
testing.

JNIOR LOG FILES

The JNIOR creates a number of log files. Log files typically
grow with time and can get quite large. Embedded devices
often have limited memory resources and it is necessary to
limit the size of log files. One strategy used by the JNIOR
allows a log file to grow to about 64KB at which point the
file becomes a BAK file and a new log begins to grow. Any
previous BAK file is overwritten in the process. So at any
one point there can be from 64KB up to 128KB of log detail
available.

The Mirai login failure reports would quickly
overwhelm the standard jniorsys.log system log. As this is a
valuable source of message detail when issues do arise, it
became necessary to move the login failure reports to a
separate access.log file. This change preserves the other
system log entries for a much longer period of time
improving our ability to debug in the future.

THE TRACKING APPLICATION

The approach we used in this application was to wait for a
new version of the access.log.bak file to become available.
At that point we process the entire content and return to wait
for another updated BAK file. Scanning for new entries in
the access.log file and trying to provide a more real-time
representation is problematic. There would be contention
between the application and the system as content is
processed at the same time new entries are being added. The
JNIOR mediates that but there is no reason to stress the
system to that point. The BAK file updates often enough
given the current status of this botnet.

Once a remote computer infected with the Mirai
malware finds an active Telnet port on a random system it
attempts to login. The Mirai source code has been made
openly available and we can see that it uses a predefined list
of account and password combinations. It is looking for
specific targets hoping that users fail to change login
credentials from their defaults (or otherwise use common
passwords). This means that for any one botnet host there
are numerous login attempts and hopefully failures. On the
JNIOR each failure generates an entry in the access.log file.

We want to track each host. Therefore we need to create
a database of host information and one that is keyed on IP
Address. This is accomplished using the native JSON
functionality. You will see that we can age/remove old host
entries from the database, we can add new entries to the
database, and the database can be used directly by a web
page designed to map the set of infected hosts.

The main structure of the resulting application is shown
in Figure 1. The JAR file has been loaded into the /flash
folder on the unit and we created a Run key in the Registry
to start the program on boot.

WEBSERVER SUPPORT

The application program will detect a new set of login
failures and process the entire list. The database is updated
in the process and then saved as /flash/public/infected.json.
We will look at that process shortly. Here we see that the
database is made publicly available by its location.

The JANOS WebServer is a fully functional server
capable of handling multiple simultaneous requests. This
includes a version of server-side scripting modelled after
PHP [4]. The website root where web pages are stored is
/flash/www and by default requires login authentication. This
is important especially as we are running in a hostile
network environment. The WebServer supports default
pages such as the Dynamic Configuration Pages (DCP) used
to remotely configure and control the JNIOR. This
absolutely needs to be password protected.

JANOS also provides an additional root area wherein
files are automatically made public. This is the folder
/flash/public. So while we are able to protect everything on
the server, we are also able to provide open access to
selected files simply by placing them in this special folder.
In this application that includes the JSON database

AN02 ©2017 INTEG 3 August 3, 2017

1 public class JAccess {
2
3 public static void main(String[] args) throws Throwable {
4
5 // Program is restarted via watchdog should any exception be thrown. See error.log
6 // for details.
7 Watchdog watchdog = new Watchdog("Access logger");
8 watchdog.setAction(Watchdog.WDT_RESTART);
9 watchdog.activate(300000);
10
11 // background routine updates infected.json file from access.log.bak periodically
12 for (;;) {
13
14 // check file timestamps
15 File jdb = new File("/flash/public/infected.json");
16 File acc = new File("/access.log.bak");
17
18 // if the access log has changed
19 if (acc.lastModified() >= jdb.lastModified()) {
20
21 // database
22 Json db = new Json(jdb);
23

 .
 . (see Figures 2 and 5 for the code here)
 .

95 db.save(jdb);
96 }
97
98 // sleeps alot
99 Thread.sleep(60000);
100 watchdog.refresh();
101 }
102 }
103 }

FIGURE 1
ACCESS TRACKING APPLICATION – MAIN STRUCTURE

that we have created along with a map.php webpage that
displays the content. The latter utilizes JavaScript and
retrieves the database though an AJAX [5] call. Since this
database is already formatted as JSON it can be easily used
in this case to generate the map. This page is available as
honeypot.integpg.com/map.php and no login is needed.

FAULT TOLERANT SUPPORT

Applications can encounter errors. This is especially true in
a situation like this where an external service is used to
obtain valid Latitude and Longitude estimates for an IP
address’ location on the globe. Communications with the
service may fail due to no reason of our own. For a Java
application this means that an exception would be thrown.

Typically the developer in a finished application would
use a try-catch construction to trap any exception and to then
proceed appropriately. Another approach that is often useful
during development and when the types and sources of
possible exceptions are not yet known is to let the program
throw uncaught exceptions. The compiler allows this when
the throws Throwable clause is present as it is on Line 3 in
the program. When an uncaught exception occurs it is
reported to the errors.log file and the program terminates.

A program termination obviously interrupts operation
and is generally not acceptable performance. Here we show
the use of the Watchdog class. Lines 7-9 define a watchdog
for the program which will restart program if the watchdog’s
timer ever expires. In this case a fairly tolerant timeout of 5
minutes is used. We see that on Line 100 the timer is reset
periodically as part of the main program loop and we are
good so long as the program is running. The watchdog is a
system level service.

By using the Watchdog class we insure that our program
is always running. This approach then allows us to collect
information about errors in the errors.log file. This
information would later be useful in refining/debugging the
application.

 MAIN PROGRAM LOOP

The main program loop (Lines 12 thru 101) runs forever.
Each iteration of the loop ends up sleeping for 60 seconds
(Line 99) and servicing the watchdog timer (Line 100). The
overall task here is to detect the change in the access.log.bak
file. This is achieved by comparing the last modification
timestamp of the access log file to that on the database that
we will create and update. If the access log has been updated

AN02 ©2017 INTEG 4 August 3, 2017

24 // age database content
25 long oldage = acc.lastModified()/1000 - 24*60*60;
26
27 String[] keys = db.keyarray();
28 for (int n = 0; n < keys.length; n++) {
29 Json data = (Json) db.get(keys[n]);
30
31 long timestamp = data.getLong("timestamp");
32 if (timestamp < oldage)
33 db.remove(keys[n]);
34 }
35

FIGURE 2
AGING – REMOVAL OF OLD ENTRIES

since we last updated the database then we have new data to
process. Lines 15 and 16 reference the files and Line 19
performs the check.

When the access log backup is ready to be processed we
open the database and begin the work. Here we encounter
our first use of a JSON object. Line 22 opens the JSON data
file and loads the structure into memory where we can
access and modify previously collected data. Note that this
creates an empty database if the JSON file does not yet exist.

Once the database is open we can proceed to process the
data. When we are done the database is updated/saved by
Line 95. The program then gets to go back to sleep and waits
for the next access.log.bak update.

DATABASE AGING

At this point we need to look at the resulting JSON structure
for the entries that we eventually add to the database. Figure
3 shows a typical entry in the array. Our JSON database
amounts to one large array of objects each identified
uniquely by a textual representation of the host’s IP address.

"115.20.188.5":{
 "as":"AS4766 Korea Telecom",
 "city":"Jincheon",
 "country":"Republic of Korea",
 "countryCode":"KR",
 "isp":"Korea Telecom",
 "lat":36.5743,
 "lon":128.4943,
 "org":"Korea Telecom",
 "query":"115.20.188.5",
 "region":"47",
 "regionName":"Gyeongsangbuk-do",
 "status":"success",
 "timezone":"Asia/Seoul",
 "zip":"",
 "timestamp":1501547484
}

FIGURE 3
EXAMPLE JSON ENTRY

This JSON object contains a number of fields most of

which are returned by a third-party service whose response
to our query is also in JSON. Of interest is the last field
which the application program inserts. This timestamp

specifies the second at which the entry was added to the
database. Since our application wishes to track only the
login attempts that occur over the past 24 hours we need this
field.

Figure 2 shows the program steps that we first perform
after opening the database. This is our first real database
oriented procedure. Here we want to scan the entire database
and remove entries that are older than 24 hours. Line 25
calculates that point in time 24 hours prior to now. We use
the last modification timestamp on the access.log.bak file
although the application could easily use the current time.

Line 27 defines a String array containing each of the IP
addresses referenced in the database. Those are our keys into
the database. Lines 28 thru 34 then process each IP address
by first obtaining the object (Line 29), retrieving the
timestamp field (Line 31) and checking its age (Line 32). If
the entry is found to have expired it is simply removed from
the database with the statement on Line 33.

Once this step has completed our database contains only
information about hosts that were encountered in the past 24
hours. Here we see how the JSON structure allows us to
uniquely index the entries by IP address. We can then
retrieve data by IP address.

SCANNING THE ACCESS LOG

The next step is to process the new entries that are now
contained within the access.log.bak file. Figure 5 shows the
next block of code that deals with the access log content.
Here we open the log file (Lines 36 and 37) and read each
line that file contains in a loop. Each entry contains a failed
login report formatted as shown in Figure 4.

 08/01/17 16:08:33.673,
 ** Command/187.162.255.236:41695 failed CMD
 login #1 'user' (pid 39450)

FIGURE 4

TYPICAL FAILED LOGIN REPORT

With each access log entry we apply a Regex [6]

expression locating the IP address in the text. If one is found
we attempt to read any prior reference to it in the database. If
the entry already exists then there is no need to process it

AN02 ©2017 INTEG 5 August 3, 2017

36 FileReader fin = new FileReader("/access.log.bak");
37 BufferedReader in = new BufferedReader(fin);
38
39 String line;
40 while ((line = in.readLine()) != null) {
41
42 Pattern p = Pattern.compile("\\d+\\.\\d+.\\d+.\\d+");
43 Matcher m = p.matcher(line);
44 if (m.find()) {
45
46 String ipaddr = m.group();
47 if (db.get(ipaddr) == null) {
48

 .
 . (see Figure 6 for the code here)
 .

90 }
91 }
92 }
93
94 in.close();

FIGURE 5

SCANNING THE FAILED LOGIN ENTRIES – ACCESS.LOG.BAK

further. We are only interested in discovering new addresses
that we will then need to add to the database.

Once we have made our way through the entire access
log we must close the file (Line 94). At this point we are
done and we fall back into the main loop of Figure 1. The
database is saved and the program proceeds to sleep.

PROCESSING A NEW HOST

Figure 6 show the balance of the program filling in Lines 49
thru 89. Here we perform the interaction with the external
service that will supply an approximate Latitude and
Longitude for the IP address of a new infected host. We will
add that information into the database and continue
processing access log entries.

The procedure shown in Figure 6 creates a connection
to the external service and issues a request for any
information available regarding the specific host IP address.
The details here are beyond the scope of this paper. There
are numerous services of this kind. Each provides data in
differing formats. Here we use a free service that also
optionally replies using the JSON format.

As a point of interest since we are dealing with an
international landscape we need to handle the expanded
Unicode [7] character set. In this case these characters are
encoded using UTF8 [8]. On Line 79 we handle the UTF8
conversion. Note that JANOS supports these features in a
manner that closely resembles standard Java in order to
maintain a familiar programming environment.

Finally Line 80 verifies the JSON format and Lines 81
thru 83 create and add the record to the JSON database. An
object is directly created from the textual JSON response
supplied by the service. This is why our entries contain all of
the various fields supplied by the service. We append the
timestamp field here using the system time in seconds. This
is what we need to age the entries removing those that then

become older than 24 hours. The new record is added to the
database and we proceed to process any additional failed
login reports.

WEB INTERFACE

With the application running the /flash/public/infected.json
database file updates periodically as Mirai login attempts go
on continuously. At the time of this writing this occurs every
3 hours or so. The honeypot.integpg.com/map.php page uses
the Google mapping API [9] to display a simple map with
markers. Those markers are derived from our database file
directly using JavaScript.

Once the page loads a small piece of JavaScript runs
and retrieves the database using an XMLHttpRequest(). The
JNIOR responds with the database file content which is
textual JSON. This is easily parsed by JavaScript into an
object that can be as easily processed as it was created.

The web page’s script then scans through the database
adding a marker for each IP address using the ‘lat’ and ‘lon’
fields. Here we format tooltip mouseover information using
the ‘ipaddr’, ‘city’, ‘country’ and ‘regionName’ fields.
These are logically combined and neatly formatted with
abbreviations to produce a nice location reference.

SUMMARY

This is an interesting application for the JNIOR that
demonstrates its potential value outside of the realm of
controls. The ability of the device to monitor various signals
of a hardware nature and of a network nature, offers the
capacity for data collection. That data can be easily
transmitted to remote servers or added to a local database.
These metrics can be of significant value in some markets.

We have demonstrated the use of the JSON structure in
a database application. Our application needed to store

AN02 ©2017 INTEG 6 August 3, 2017

49 String serverHostname = "ip-api.com";
50 int port = 80;
51
52 Socket dataSocket = new Socket(serverHostname, port);
53 PrintWriter sockout = new PrintWriter(dataSocket.getOutputStream(), true);
54 BufferedReader sockin =
55 new BufferedReader(new InputStreamReader(dataSocket.getInputStream()));
56
57 sockout.println("GET /json/" + ipaddr + " HTTP/1.1");
58 sockout.println("Host: " + serverHostname);
59 sockout.println();
60
61 // obtain data length from header
62 int length = 0;
63 String response;
64 while ((response = sockin.readLine()) != null) {
65 if (response.length() == 0)
66 break;
67 if (response.startsWith("Content-Length: "))
68 length = Integer.parseInt(response.substring(16));
69 }
70
71 if (length > 2) {
72 char[] resp = new char[length];
73
74 int count = 0;
75 while (length - count > 0)
76 count += sockin.read(resp, count, length - count);
77
78 response = new String(resp);
79 response = new String(response.getBytes(), "UTF8");
80 if (response.startsWith("{") && response.endsWith("}")) {
81 Json data = new Json(response);
82 data.put("timestamp", System.currentTimeMillis()/1000);
83 db.put(ipaddr, data);
84 }
85 }
86
87 sockout.close();
88 sockin.close();
89 dataSocket.close();

FIGURE 6
GETTING HOST DETAIL – UPDATING THE DATABASE

information about individual host computers which can later
be retrieved based upon IP address. The native JSON
support provided by JANOS offers that functionality. Not
only could we easily store information but were able to age
and remove old records. The database allowed us to
determine if a host was new to us. And, as a bonus the
resulting database file is directly usable in rendering web
page content.

Nevertheless this is not a substitute for an actual
database engine. Here JSON objects are constructed of and
stored as textual strings. The string representations of
numbers are not in any way as efficient as binary formats.
Arrays are searched linearly where a database engine would
handle indexing using more advanced techniques aimed at
minimizing access timing. The functions of a database
engine are not yet available in JANOS. It is clear though that
for many simple applications the JSON approach is a
workable option.

On the application programming side this example
utilizes some complicated techniques. The code here has not
been optimized. Some programmers will likely notice right
away where gains in efficiency can be achieved. For
example we repeatedly regenerate the same Regex object.
That can certainly be done once during initialization. The
database saves all of the data returned by the IP location
service. Clearly we could save only what we need. That
would reduce the database size, lower access times, and even
reduce the page load timing for browsers. Even in its current
form the application runs as expected and handles its tasks
quickly.

One final note, the honeypot testing that has been
ongoing has greatly improved JANOS and hardened the
product in regards to network security. While it is likely that
any device specifically targeted by professional hackers
would eventually fall, the JNIOR with JANOS (v1.6.2) or
later quietly performs admirably as an anonymous member
of the IoT.

AN02 ©2017 INTEG 7 August 3, 2017

REFERENCES

[1] Java™ is a trademark of the Oracle Corporation and its related
entities.

[2] JSON JavaScript Object Notation is a lightweight data-interchange
format, www.json.org

[3] Mirai Botnet (malware) - turns networked devices running Linux into
remotely controlled "bots" that can be used as part of a botnet in large-
scale network attacks, Wikipedia

[4] PHP (recursive acronym for PHP: Hypertext Preprocessor) is a
widely-used open source general-purpose scripting language that is
especially suited for web development and can be embedded into
HTML, www.php.net

[5] AJAX - Asynchronous JavaScript And XML, allows web pages to be
updated asynchronously by exchanging data with a web server behind
the scenes, www.w3schools.com/xml/ajax_intro.asp

[6] Regex, Regular Expression, a pattern used in string searching
algorithms, Wikipedia, en.wikipedia.org/wiki/Regular_expression

[7] Unicode is a computing industry standard for the consistent encoding,
representation, and handling of text expressed in most of the world's
writing systems, Wikipedia, Unicode.org

[8] UTF8 one way of encoding Unicode characters, Wikipedia,
en.wikipedia.org/wiki/UTF-8

[9] Google Maps APIs, developers.google.com/maps/

CONTACT INFORMATION

INTEG Process Group, Inc.,
2919 E Hardies Rd 1st Floor
Gibsonia, PA 15044
USA

724-933-9350
www.integpg.com

	Contact Information

