
JNIOR Simulator

Overview

The JNIOR Simulator is designed to simulate some of the I/O functionality of the JNIOR. The JNIOR

Simulator was developed as a backend DLL that can be connected to various frontends. Frontends can

be developed by INTEG or its clients.

Note that a PC running the simulator will be much faster than a JNIOR. This can cause the monitor

packets to arrive more frequently than would be seen in normal JNIOR usage. Also monitor packets will

arrive almost immediately in response to an I/O change where the speed of the JNIOR would introduce

some delay.

The JNIOR Simulator starts a TCP Server for each JNIOR it is going to simulate. The number of JNIORs

that are going to be simulated is passed in as an argument in the StartServer() function described

later. When a new client is connected the JNIOR Simulator creates a new Connection object to handle

the client communications. Each JNIOR being simulated can have multiple client connections.

As mentioned, only some of the JNIOR functionality was simulated. Specifically the I/O monitor packet

delivery is simulated. In order to receive the monitor packet a client must be connected and logged in

with valid credentials. Once the login is successful a monitor packet will be delivered. A monitor packet

will also be delivered whenever there is a change in I/O.

Use Cases

A user wants to implement the JNIOR Protocol or utilize the JNIOR DLL without the physical JNIOR.

A user wants to simulate x JNIORs in the field without the presence of those JNIORs.

Requirements

Server

1. Must utilize TCP/IP

2. Must impersonate the JNIOR side of the JNIOR Protocol

3. Must be able to simulate multiple JNIORs

4. Must be able to accept multiple connections per simulated JNIOR

5. Must assign each simulated JNIOR a new port number starting at the port number specified

during the startup of the server

JNIOR Functions

1. Must be able to set a single input on a simulated JNIOR

2. Must be able to set multiple inputs on a simulated JNIOR

3. Must be able to get the status of a single input on a simulated JNIOR

4. Must be able to get the status of all of the inputs on a simulated JNIOR

5. Must be able to set a single output on a simulated JNIOR

6. Must be able to set multiple outputs on a simulated JNIOR

7. Must be able to pulse a single output on a simulated JNIOR

8. Must be able to pulse multiple outputs on a simulated JNIOR

9. Must queue pulses as the JNIOR would

10. Must be able to get the status of a single output on a simulated JNIOR

11. Must be able to get the status of all of the outputs on a simulated JNIOR

12. Must be able to keep track of counters

13. Must be able to keep track of usage meters

14. Must be able to simulate a JNIOR disconnecting

User Interface

15. Must allow the user to select which network adapter to bind to

16. Must allow the user to select a starting port for a block of ports

17. Must allow the user to select the number of JNIORs to simulate

18. Must allow the user to set the state of a single input

19. Must allow the user to set the state of multiple inputs

20. Must allow the user to set the state of a single output

21. Must allow the user to set the state of multiple outputs

Structure Definitions

NOTE: All structures are 1-byte aligned

CONNECT_PARAMS

The CONNECT_PARAMS provides an object that holds the information on how to set up the server. The

host field indicates the network adapter that the server will bind to. The port field is the starting port

number for the block of ports used for all simulated JNIORs. For example, if you start with port 9200

and are simulating 8 JNIORs then ports 9200 – 9207 will be used.

#pragma pack(1)

struct CONNECT_PARAMS {

 char* host;

 int port;

};

SERVER_INFO

This structure is passed in via the SetServerInfoCallback() function described later. The

SERVER_INFO structure contains the information that is passed back as the void* args argument in

the ServerInfoNotify() method. It contains information aobut the simulated JNIOR as well as the

CONNECT_PARAMS structure and how many clients are connected.

#pragma pack(1)

struct SERVER_INFO {

 CONNECT_PARAMS* cp;

 int connectedClients;

 int handle;

 int inputs;

 int outputs;

};

Function Prototypes

Start Server

Starts the Simulator servers according to the CONNECT_PARAMS and the count parameters

extern "C" JNIORDLL_API int StartServer(

CONNECT_PARAMS* cp,

int count);

Set Input Count

Sets the number of inputs on the simulated JNIOR.

extern "C" JNIORDLL_API int SetInputCount(

int handle,

int inputCount);

Get Input Count

Gets the number of inputs on the simulated JNIOR.

extern "C" JNIORDLL_API int GetInputCount(

 int handle);

Get Input

Returns the status of a single input. Either 0 indicating low or off or 1 indicating high or on.

extern "C" JNIORDLL_API int GetInput(

int handle,

int channel);

Get Inputs

Gets the status of all of the 8 inputs. A binary representation of the inputs states is returned. Input 8 is

the MSB.

extern "C" JNIORDLL_API int GetInputs(

int handle);

Set Input

Sets a single input channel to the new desired state. 0 is returned if the command is successful. Once

an input state is changed a new monitor packet will be sent out to all connected clients.

extern "C" JNIORDLL_API int SetInput(

int handle,

int channel,

int state);

Set Inputs

Sets multiple inputs according the the channel mask and states mask. Inputs not defined by the channel

mask are not affected. 0 is returned if the command is successful. Once an input state is changed a new

monitor packet will be sent out to all connected clients.

extern "C" JNIORDLL_API int SetInputs(

int handle,

int channelMask,

int stateMask);

Set Output Count

Sets the number of outputs on the simulated JNIOR.

extern "C" JNIORDLL_API int SetOutputCount(

int handle,

int outputCount);

Get Output Count

Gets the number of outputs on the simulated JNIOR.

extern "C" JNIORDLL_API int GetOutputCount(

 int handle);

Get Output

Returns the status of a single output. Either 0 indicating low or off or 1 indicating high or on.

extern "C" JNIORDLL_API int GetOutput(

int handle,

int channel);

Get Outputs

Gets the status of all of the 8 outputs. A binary representation of the inputs states is returned. Output

8 is the MSB.

extern "C" JNIORDLL_API int GetOutputs (

int handle);

Set Output

Sets a single output channel to the new desired state. 0 is returned if the command is successful. Once

an output state is changed a new monitor packet will be sent out to all connected clients.

extern "C" JNIORDLL_API int SetOutput(

int handle,

int channel,

int state);

Set Outputs

Sets multiple outputs according the the channel mask and states mask. Outputs not defined by the

channel mask are not affected. 0 is returned if the command is successful. Once an output state is

changed a new monitor packet will be sent out to all connected clients.

extern "C" JNIORDLL_API int SetOutputs(

int handle,

int channelMask,

int stateMask);

Disconnect

This will cause the server for the specified JNIOR handle to stop and then restart. The net effect will be

that all connected clients will be disconnected from the simulated JNIOR.

extern "C" JNIORDLL_API int Disconnect (

int handle);

Set Server Info Callback

This function sets the listener method for server events. This functionality is optional but if desired this

function MUST be called before the StartServer() function.

extern "C" JNIORDLL_API int SetServerInfoCallback(

CALLBACKNOTIFY lProcAddress);

The CALLBACKNOTIFY tpye is defined as follows

typedef void (CALLBACK* CALLBACKNOTIFY)(void* args);

Parameter definitions

handle The index of the simulated JNIOR. 0 based index.

channel The channel of the I/O point

state The state of the I/O point

channelMask The binary representation of which 8 inputs or outputs are affected by the

command. This value will be 0 – 255. Channel 8 is the MSB.

stateMask The binary representation of the 8 input or output states. This value will be 0 –

255. Channel 8 is the MSB.

